Содержание

Как устроена коробка «автомат» и как правильно с ней обращаться

Водители называют «автоматом» несколько разных механизмов. Объединяет их одно: водителю во время движения не требуется орудовать рычагом переключения передач и нажимать на педаль сцепления, которая отсутствует.

Что такое коробка «автомат»

Коробка автомат (автоматическая трансмиссия, АКП) — это тип коробки передач, способный самостоятельно и без вмешательства водителя выбирать нужное передаточное число в соответствии с режимом движения и сопутствующими факторами. К автоматам принято относить несколько видов коробок передач: классическую гидротрансформаторную АКП, «робот» (РКП) и вариатор (CVT). Хотя последние два типа правильнее называть автоматизированные трансмиссии.

Каждая из перечисленных трансмиссий серьезно упрощает процесс управления: водителю не нужно выжимать педаль сцепления и думать над выбором оптимальной передачи — передаточные числа подбираются самостоятельно. Все, что требуется, — жать на газ и рулить.

Устройство коробки «автомат»

Идея отказа от ручного переключения передач возникла почти сразу после появления автомобиля, но впервые полноценно реализовать ее смогли лишь в 30-х годах XX века.

В 1902 году немецкий инженер Герман Феттингер создал судовой автомат. Спустя два года братья Стартевенты из Бостона явили миру свою конструкцию, предназначенную для установки на автомобили. По сути это была усовершенствованная механика с двумя передачами, переключение которых происходило автоматически.

Полноценный же автомат запатентовал Оскар Бэнкер (Асатур Сарафян) в 1935 году — его изобретением воспользовалась компания General Motors. С внесением доработок в 1940 году появился тот самый классический гидротрансформаторный автомат, который применяется в усовершенствованном виде по сегодняшний день.

Рынок 26 апреля 2022 10 самых дешевых машин с автоматом. Реальные цены у дилеров

Конспекты 19 марта 2022 Как и когда нужно менять масло в автомате

В его основе лежат не пары шестерен, а планетарный механизм с переменным передаточным отношением: центральная (солнечная) шестерня, коронная шестерня и шестерни-сателлиты. Передаточное отношение у такого набора может меняться в зависимости от того, как именно вращаются его части относительно друг друга. Соединяя разные части планетарного механизма, можно заставить шестерни вращаться с разными скоростями, то есть получить коробку передач.

За переключение передач здесь отвечают многофункциональные гидромуфты, выполняющие функции сцепления. Муфты сжимаются давлением гидравлической жидкости. Крутящий момент от двигателя передается коробке передач так называемым гидротрансформатором, избавляющим от жесткой связи двигателя и коробки передач. Благодаря гидротрансформатору переключение передач происходит плавно, почти незаметно.

Основными элементами классического автомата являются:

  • Гидротрансформатор (отвечает за преобразование и передачу оборотов).
  • Планетарный редуктор (управляет гидротрансформатором).
  • Система гидроуправления (отвечает за работу планетарного редукторного узла).

Принцип работы автомата

Принцип работы автомата различается в зависимости от вида автоматической трансмиссии. На каждом из них остановимся отдельно.

Классическая (гидротрансформаторная) АКП

Принцип работы классической АКП основан на давлении трансмиссионной жидкости. За передачу крутящего момента от двигателя к элементам автоматической коробки передач отвечает гидротрансформатор (он же «бублик»). В состав устройства входят три лопастных колеса — насосное, турбинное и реакторное, — заключенные в герметичный корпус. Насосное колесо соединено с коленчатым валом двигателя, а турбинное — с первичным валом КПП.

После запуска двигателя в «бублике» под давлением насоса начинает рециркулировать масло. Проходя через крыльчатки реактора, оно трансформирует механическую силу от маховика в гидравлическую — крутящий момент начинает передаваться на планетарный механизм. Гидротрансформатор выполняет функции как сцепления, так и гидромуфты.

Система гидроуправления позволяет автомату переключать передачи без тяг и муфт с синхронизаторами. Открывая и закрывая в гидроблоке нужные клапаны, коробка передач самостоятельно сжимает нужные пакеты фрикционов давлением масла. Плавная их блокировка, управляемая электроникой, позволяет автомату переключаться почти незаметно.

Вариатор (CVT)

Основа бесступенчатой трансмиссии — два конических шкива, один из которых соединен с валом двигателя, а второй передает крутящий момент на ведущие колеса автомобиля. Мощность передается с ведущего вала на ведомый посредством соединяющего их ремня (или цепи). На каждом из валов имеются два конуса, обращенные вершинами друг к другу. Изменение зазора между ними приводит к смещению ремня и изменению передаточного отношения.

Когда конусы раздвигаются, ремень смещается ближе к оси вращения, и наоборот. Для изменения передаточного отношения достаточно просто сдвигать конусы на одном валу и одновременно раздвигать на другом.

За управление конусами отвечают гидравлическая система и электроника. Гидротрансформатор позволяет автомобилю с вариатором трогаться и останавливаться, а планетарный редуктор — включать задний ход и расширять диапазон передаточных чисел. Все современные вариаторы умеют имитировать фиксированные передачи.

«Робот» (РКП)

Роботизированная коробка передач по своей сути — это механика, дополненная электроникой и сервоприводами. Такая трансмиссия полностью берет на себя процесс переключения передач. Выбор той или иной передачи контролируется электроникой. Вместо педали сцепления и рычага коробки стоят электромоторы, которые по команде электроники «выжимают» сцепление и меняют ступени.

Простейшие роботы уже практически не применяются в современном автопроме. Им на смену пришли коробки следующего поколения — так называемые преселективные роботы с двумя сцеплениями (к примеру, коробки DSG). Каждое из сцеплений отвечает за свой набор передач — четных и нечетных. Процесс переключения с одной передачи на другую происходит практически мгновенно, без разрыва крутящего момента.

Обозначения на коробке автомат

Режимы работы коробки автомат могут поставить в тупик водителя, который прежде ездил только на механике. Для наглядности мы оформили обозначения и описания в виде таблицы.

Обозначение Расшифровка
N (Neutral) Нейтральное положение. Положение селектора в позиции N означает, что никакая из передач не включена. Автомобиль может свободно катиться.
D (Drive) или A (Automat) Режим движения вперед. В зависимости от потребностей водителя автоматически используются те или иные передаточные числа.
R (Revers) Задняя передача. Выбрать этот режим можно только при полной остановке автомобиля.
Р (Parking) Режим парковки. Переводя селектор в положение Р, водитель механически блокирует трансмиссию. На многих моделях не получится запустить двигатель, если селектор не находится в этом положении. Блокировка в режиме Р никак не связана с тормозной системой – она лишь помогает стояночному тормозу, но не заменяет его.
M (Manual) Режим ручного управления. В этой позиции селектора водитель может самостоятельно переключать передачи с помощью подрулевых лепестков, кнопок или самого селектора – толчками вверх и вниз. В зависимости от конкретной модели процесс осуществляется по-разному.
L (Low) или 1, 1L Режим пониженной передачи. Позволяет зафиксировать коробку на первой передаче. Этот режим помогает при движении по скользкой дороге либо бездорожью на минимальных скоростях. Также может применяться при торможении двигателем, на крутых спусках и подъемах.
L2, 2L, 2 При выборе такого режима коробка передач не перейдет выше второй передачи.
D3 или 3 Ограничение не выше третьей скорости.
OD (Over Drive) Режим повышенной передачи. Помогает экономить горючее на высоких скоростях.
KD (Kick Down) Пониженная передача. Включается, если продавить педаль газа «в пол». Используется для максимально быстрого набора скорости.
S Спортивный, динамичный режим. Позволяет использовать все возможности двигателя и трансмиссии. Его не рекомендуется выбирать при движении на нестабильном покрытии и на бездорожье.
W (Winter) или значок снежинки Зимний режим. В этой позиции селектора автомобиль трогается с повышенной передачи, более плавно, что помогает избежать пробуксовки. Летом применять такой режим не рекомендуется.
E Режим экономии. Обеспечивает плавность движения и позволяет сжигать меньшие объемы горючего. Движение автомобиля в таком режиме становится более вялым, отклик на педаль газа ухудшается.

Наиболее часто встречающейся на моделях с «автоматом» является раскладка режимов P-R-N-D-L. Остальные перечисленные обозначения и некоторые другие используются опционально. О них в обязательном порядке рассказывается в инструкции.

Плюсы и минусы коробок автомат

Автоматические трансмиссии обладают множеством плюсов, но не лишены и минусов. Об этом не стоит забывать на этапе выбора автомобиля.

К несомненным плюсам отнесем следующие моменты:

  • Легкость эксплуатации: любая автоматическая трансмиссия избавляет водителя от утомительных процедур выжима педали сцепления и ручного выбора передач.
  • Высокая плавность движения. Благодаря наличию до 10 передач современные автоматы изменяют передаточные отношения чрезвычайно плавно, практически незаметно.
  • Повышенная безопасность. Переключить механику без разрыва потока мощности невозможно.

Минусы автоматов:

  • Дороговизна. Как правило, автомобили с автоматами стоят дороже, чем с механической коробкой. Обслуживание автомата также дороже.
  • Увеличенный расход топлива.
  • Автоматы не любят экстремальных нагрузок.
  • Машины с автоматом не рекомендуется буксировать на большие расстояния.
  • Автоматы не любят буксировки прицепов: возможны ограничения.

Как управлять коробкой автомат

Научиться пользоваться машиной с коробкой автомат намного проще, чем автомобилем с механикой. Именно по этой причине существует разделение в водительских правах: водители, обучавшиеся в автошколе на машине с АКП, не могут ездить на механике — требуется переобучение. Те, кто прежде ездил на машине с МКП, с автоматом легко совладают.

Алгоритм обращения с автоматом максимально прост:

  • Чтобы завести машину, нужно сесть за руль, нажать тормоз и повернуть ключ в замке/нажать кнопку запуска двигателя. Селектор коробки должен находиться в парковочном положении P. Запускать ДВС можно и с нейтрального режима, но производители рекомендуют использовать именно режим паркинга. Запустить мотор из любого другого режима не получится.
  • Для начала движения селектор выставляется в D или R (вперед и назад соответственно). После того как вы отпустите педаль тормоза, машина сама начнет движение. Нажатием на газ можно увеличить скорость.
  • Для остановки машины нужно отпустить педаль газа и нажать на тормоз.
  • Перед тем как заглушить двигатель следует перевести селектор коробки в парковочное положение Р.

Как правильно ездить с коробкой автомат

При эксплуатации автомобиля с автоматической трансмиссией нужно придерживаться некоторых важных рекомендаций, которые помогут продлить коробке жизнь.

Переключать режимы между D-R-P нужно при полной остановке автомобиля и зажатом тормозе.

Во время движения переключать селектор можно лишь в некоторые положения. Технически можно включить режим нейтрали (N) и двигаться накатом, но делать так не рекомендуется из соображений безопасности.

Оставлять автомобиль без стояночного тормоза с включенным режимом P можно лишь на ровных площадках. Несоблюдение правила чревато тем, что машина может внезапно покатиться.

При движении в пробке на машине с автоматом водителю постоянно приходится давить на тормоз. Пока автомобиль стоит, селектор трансмиссии следует переводить в режим паркинга, а не в нейтраль. Нейтраль используется для того, чтобы перекатить машину с места на место при выключенном двигателе и для буксировки на небольшие расстояния.

Буксировать машины с автоматом и заглушенным мотором на значительные расстояния нельзя. Этот процесс возможен лишь на нейтрали и с работающим двигателем, либо с вывешиванием ведущих колес.

Буксировка других машин и тяжелых прицепов автомобилем с автоматом возможна при соблюдении рекомендаций производителя. Для снижения нагрузки могут быть предусмотрены специальные режимы. В процессе буксировки желательно не использовать высокие передачи.

Чтобы выбраться из сугроба, можно воспользоваться фиксированными положениями L, 1 или 2, предварительно отключив систему стабилизации.

Как продлить жизнь коробке автомат

Любой автомат значительно сложнее и дороже механики; стоит сделать все возможное, чтобы уберечь его от поломок.

Резкая и агрессивная езда сильно сокращает жизнь автоматам (как и всем элементам автомобиля). При такой эксплуатации происходит повышенный износ фрикционов, планетарных редукторов, муфт и пр. Продукты износа загрязняют масло и приводят к перегреву коробки. Выйти из строя может практически каждый узел.

Для продления жизни трансмиссии рекомендуется выполнять несколько правил:

  • Плавно трогаться.
  • Не нажимать на газ и тормоз одновременно. Это приводит к перегреву масла в гидротрансформаторе и преждевременному выходу коробки из строя.
  • Не ездить в экстремальных режимах с пробуксовками. Автоматические трансмиссии чрезвычайно чувствительны к ударным нагрузкам.
  • Не использовать часто режим кик-даун. В этом режиме автомат испытывает повышенные нагрузки.
  • Не переводить в движении селектор в положение «нейтраль».
  • Не использовать прием раскачки, когда автомобиль застрял. Это приводит к повышенному износу фрикционов.

Как отремонтировать автомат

Автоматической трансмиссии, как и любому другому агрегату автомобиля, требуется периодическое обслуживание. Если производитель рекомендует менять масло или фильтры — надо обязательно следовать этому правилу.

В ряде случаев простая замена масла может вернуть автомату жизнь: избавить от «пинков» и некорректной работы. Процедуру лучше доверить профессионалам, поскольку для полной замены требуется специализированное оборудование.

Вместе с маслом в обязательном порядке меняется фильтр, который в процессе работы агрегата задерживает в себе продукты износа. Нередко помимо фильтра приходится менять сопутствующие компоненты — уплотнительные прокладки, кольца или даже поддон.

Автомат — технически сложное устройство с отдельным блоком управления. При визите в сервисный центр можно с помощью диагностического оборудования считать ошибки в работе АКП и, в случае необходимости, произвести ремонт проблемных компонентов.

Всевозможные рывки, толчки, подвисания коробки на одной передаче — признаки поломки, требующие обращения к специалистам. Попытки решить эти проблемы самостоятельно, с большой вероятностью, не помогут.

АКПП: виды, устройство и принцип действия коробки автомата

акпп

Автоматические коробки переключения передач (АКПП) становятся все более популярными в нашей стране, доля автомобилей с АКПП растет быстрыми темпами. Автоматические коробки передач передают вращающий момент от двигателя к колесам автомобиля, автоматически увеличивая или уменьшая передаточное число, подстраиваясь под оптимальные режима работа двигателя. Коробка автомат классического типа состоит из гидротрансформатора и ряда планетарных передач. Коробка автомат, плавно переключая передачи, обеспечивает автомобилю плавный ход и превращает управление машиной в удовольствие.

В своей статье мы рассмотрим устройство и принципом работы автоматической коробки передач, перечислим основные видами коробок автоматов, познакомимся с режимами работы, проанализируем достоинства и недостатки АКПП.

Что такое АКПП

акпп

Автоматическая коробка передач (АКПП) — это коробка передач, которая самостоятельно определяет наиболее подходящее передаточное отношение в зависимости от текущего скоростного режима. Автоматическая коробка без участия водителя сама выбирает и переключает нужное передаточное отношение, подстраивается под заданную водителем скорость, обеспечивает плавное начало движения и плавный ход автомобиля. АКПП снимает с водителя львиную долю нагрузки во время движения по сравнению с классической механической коробкой передач.

Поскольку сейчас существуют разные варианты автоматических коробок (роботы и вариаторы), то, чтобы не путаться, АКПП еще называют: классический автомат, гидроавтомат, гидромеханическая трансмиссия, планетарный автомат.

История создания автоматической коробки

герман феттингер

Идея создания автоматической коробки принадлежит немецкому инженеру Герману Феттингеру, разработавшему первый гидротрансформатор в 1902 году, и поначалу такая трансмиссия применялась только для строительства судов.

Первый автомобиль, оснащенный планетарным автоматом, был американский Ford T. После выхода этого автомобиля наиболее активную роль в разработке автоматов сыграла компания General Motors, которой удалось выпустить полуавтоматическую трансмиссию в середине 1930-х годов. Та же GM в 1940 году создала первую совершенно автоматическую коробку передач

Устройство автоматической коробки передач

акпп

Автоматическая коробка передач имеет сложное строение и сам механизм, посредством которого обеспечивается переключение передач, сложен. Суть этого процесса сводится к включению и выключению муфт и тормозов посредством давления рабочей жидкости.

Есть несколько видов АКПП, которые имеют некоторые различия в конструкции, но основные элементы у них одинаковые.

акпп

  • Гидравлический трансформатор (гидротрансформатор). Представляет собой металлический корпус, который заполнен специальной рабочей ATF-жидкостью (маслом). Его основная задача — передавать вращение от мотора к коробке переключения передач. По факту — это аналог сцепления в механической КПП. Состоит из насосного, турбинного и реакторного колес, блокировочной муфты и муфты свободного хода. Колеса имеют лопасти с отверстиями для циркуляции рабочей жидкости. Муфта свободного хода нужна, чтобы реакторное колесо могло вращаться в обратную сторону. Блокировочная муфта позволяет заблокировать гидротрансформатор при определенных режимах работы автомобиля.
  • Планетарный механизм. Это редуктор, который переключает скорости в результате изменения передаточного числа на шестеренках. Состоит из: планетарных рядов (солнечная шестерня, сателлиты, коронная шестерня, водило), валов, барабанов с фрикционными муфтами, обгонной муфты и ленточного тормоза. Блокировка одного из элементов планетарного ряда приводит к передаче вращения и изменения крутящего момента. Планетарный ряд может блокироваться ленточным тормозом, обгонной муфтой и фрикционными муфтами. Планетарный механизм выполняет функции блока шестерней в механической коробке.
  • Гидросистема. Состоит из масляной помпы, фильтра, толкателей, гидрораспределителя. Рабочая жидкость создает рабочее давление в коробке и защищает внутренние элементы от перегрева и коррозии.

акпп

  • Электронный блок управления. Собирает входящую информацию от педалей, систем АБС и ЕСП, датчиков, ручки АКПП и других систем, обрабатывает ее. После чего формирует сигналы, которые отправляются на исполнительные клапаны гидроблока. Блок управления регулирует работу фрикционных муфт и направляет потоки рабочей жидкости в ту или иную муфту, что ведет к переключению скорости. То есть блок управления — буквально «мозг» АКПП, он производит управление коробкой передач. Поломка блока управления ведет к переключению работы автомата в аварийный режим.
Читать статью  Chevrolet Aveo T200-250 с пробегом: автомат, который лучше механики, и моторы с немецкими корнями

Сравнение АКПП с механической коробкой

акпп и механика

В современном мире «механика» медленно, но верно сдает позиции более прогрессивному собрату — АКПП. Автоматические коробки обеспечивают более плавную и экономную работу двигателя и плавный ход машины.

От водителя не требуется постоянно следить за скоростью и оборотами двигателя, чтобы вовремя включать нужную передачу. За него все сделает «автомат», что особенно удобно при езде по городу, и крайне удобно если вы находитесь в «пробке».

Водителю не нужно львиную долю своего внимания уделять управлению машиной. Хотя есть водители, которым нравится механическая коробка, позволяющая получать удовольствие от непрерывного физического процесса управления машиной и полного контроля езды.

Плюсы и минусы АКПП

акпп

У автоматической коробки передач есть свои достоинства и недостатки, которые необходимо знать, прежде чем купить машину с автоматом или пересесть с «механики» на «автомат».

Плюсы АКПП

  • Простота и удобство управления, так как не нужно вручную переключать скорости. Водитель только управляет рулем и нажимает на газ и тормоз.
  • Отсутствует третья педаль — сцепления.
  • На машине с автоматом проще трогаться с места.
  • Плавное переключение передач и высокий коэффициент полезного действия.
  • Высокая надежность современных АКПП.
  • Невозможность «сжечь» сцепление и отсутствие необходимости в периодической замене сцепления.

Минусы АКПП

  • Механические коробки более экономичны, по сравнению с автоматами. Автомобиль с АКПП расходует больше топлива примерно на 10-15%. Хотя постепенное усовершенствование автоматов ведет к уменьшению этого показателя.
  • Автоматические коробки передач обходятся значительно дороже механических в обслуживании и ремонте. Если автомат выйдет из строя и его нужно будет полностью менять, это будет стоить солидную сумму (до трети стоимости подержанного автомобиля).
  • Невозможность быстрого разгона и резкого набора скорости, что особенно чувствуется при совершении обгона на ограниченном расстоянии или плотном встречном потоке машин, то есть когда нужно очень быстро совершить обгон. Эта проблема частично решается включением спортивного режима.
  • Автомат ограничивает индивидуальность вождения в отличие от автомобилей с механикой, где водитель полностью контролирует езду.
  • Невозможность завести машину с «толкача».
  • Автомат может быстро выйти из строя при неправильной эксплуатации.
  • Автомобиль с автоматической коробкой имеет ограничения при буксировке, и эти нюансы нужно знать, прежде чем буксировать другой автомобиль или прицеп.

Типы АКПП

акпп

Сейчас существует три типа автоматических коробок переключения передач:

  • классическая АКПП. Когда говорят АКПП, то имеют ввиду именно этот тип коробок, и в этой статье мы касаемся именно этого типа. Они устанавливаются на большинстве современных легковых и грузовых автомобилей, хотя другие два типа постепенно увеличивают свое присутствие на авторынке.
  • Робот (роботизированная коробка передач). Представляет собой один из вариантов автоматической коробки. Главная его особенность — наличие сцепления, которое обеспечивает быстрое переключение передач без потери мощности мотора. В роботе имеются входные и выходные валы, которые объединяются при помощи зубчатых колес, что приводит к переключение скорости, управляются они синхронизатором. Роботизированная коробка обычно управляется специальным электронным блоком управления, но может также управляться водителем.
  • Вариатор не имеет фиксированных передач, поэтому переключение скорости происходит очень плавно. Переключение скоростного режима осуществляется за счет конусообразных шкивов на входе и выходе коробки. Ременное соединение обеспечивает перемещение узлов. Планетарная передача отвечает за движение задним ходом. Вариатор имеет самую большую экономичность из всех автоматических коробок.

Принцип работы АКПП

акпп

При запуске двигателя происходит активация работы автоматической коробки за счет включения масляного насоса, который создает рабочее давление внутри коробки. После этого запускается гидравлический трансформатор, который раскручивается до скорости коленчатого вала.

При нажатии на педаль газа и переключении ручки управления автоматом, масло устремляется к турбине, которая начинает вращаться. Работа радиатора АКПП предотвращает перегрев масла коробки. Блок управления собирает всю поступающую информацию от степени нажатия на педаль газа и различных датчиков автомобиля, обрабатывает ее и посылает сигнал в гидравлический блок, где путем перемещений муфт и тормозов происходит изменение передаточного отношения, наиболее оптимального в данных конкретных условиях.

Масло, заполняющее внутреннюю полость автоматической коробки, имеет важнейшее значение для ее эффективной работы. За уровнем масла нужно следить, чтобы его не было слишком много или мало. Рабочее давление масла составляет 2,5-4,5 бар.

Рабочая температура масла равняется 80ºС, поэтому перед началом движения машину следует немного прогреть, что особенно важно в зимний период, чтобы избежать повреждения пластиковых элементов коробки.

Охлаждение масла чаще всего происходит за счет жидкостного радиатора, реже — воздушного. Автоматическая коробка передач в незаправленном виде и без гидротрансформатора весит в среднем около 70-80 кг. После заправки общий ее вес может достигать 110 кг.

Ресурс АКПП

коробка автомат

Точного значения срока службы автоматической коробки нет. Это будет зависеть от правильной эксплуатации автомобиля с АКПП, своевременного обслуживания коробки: замены масла и масляного фильтра, использования оригинальных запчастей и масла. Некоторые модели коробок-автоматов рассчитаны на 100-150 тысяч пробега, современные модели автомобилей оснащаются коробками-автоматами, рассчитанными на 500 тысяч км и более, и при этом не нуждаются в замене масла.

Прочитать подробнее о замене масла в автоматических коробках переключения передач вы можете в нашей статье: Замена масла в АКПП

Режимы работы автоматической коробки передач

Если вы ни разу не ездили на автомобиле с автоматической коробкой, нужно сначала узнать, какие есть режимы работы у коробки, как они обозначаются на панели и как ими пользоваться. Неправильное управление может привести к поломке коробки и дорогостоящему ремонту.

Все управление коробкой передач осуществляется через ручку, ее определенное положение включает определенный режим работы. На разных моделях АКПП количество режимов может быть разным.

коробка автомат

Основные режимы работы АКПП

  • P — Parking (парковка). Является аналогом ручника на «механике». Этот режим включается, когда машина стоит на парковке. При таком положении ручки передние ведущие колеса блокируются не прижатием тормозных колодок, блокировкой выходного вала трансмиссии.
  • N — Neutral (нейтральное положение). Колеса и вал не заблокированы, но и не связаны с двигателем. В таком положении машина может двигаться накатом. Если оставить автомобиль на стоянке в таком положении, то машина может покатиться под уклон, поэтому нельзя оставлять машину на парковку при таком режиме. Это положение используется при буксировке автомобиля.
  • R — Reverse (задняя скорость). Включает движение задним ходом. Для того, чтобы тронуться задним ходом надо нажать на педаль тормоза, перевести селектор в положение «R», отпустить тормоз, нажать газ.
  • D или A— Drive или Automat (основной режим движения). Используется во время езды в режиме автоматического переключения скоростей.
  • L или B или цифра 1 — Low (режим пониженной передачи). Аналог первой передачи на «механике», который предполагает езду на пониженной скорости. На некоторых моделях режим B включает блокировку дифференциала.
  • M — Manual (режим ручного переключения скоростей). Используется когда водителю требуется самому включать нужную передачу. Работает по аналогии с механической коробкой, только в более упрощенном варианте. Управление коробкой передач при этом режиме происходит за счет специальных кнопок «+» и «–» (подрулевых лепестков).
  • S или PWR — Sport или Power (спортивный режим). При этом режиме переключение передач происходит при высоких оборотах двигателя без потери скорости. Подразумевает возможность быстрого разгона и набора скорости, например при обгоне. Также используется для активной езды на максимальных оборотах двигателя.
  • O/D — OverDrive. Овердрайв — это повышенная передача, этот режим представляет собой аналог пятой передачи в механической коробке. Режим овердрайв используется при езде за городом с ровной скоростью свыше 50 км/ч, при езде на высокой скорости. Он экономит расход топлива.
  • D3 или O/D OFF — отключение овердрайва.
  • W или S или цифра 2 — Winter или Snow (зимняя езда). Подразумевает трогание с места и езду не выше второй скорости. Используется в зимний период при плохих дорожных условиях.
  • «3» – режим движения не выше третьей передачи.
  • E — Economic (экономичный режим).
  • Shift lock — кнопка разблокирования селектора коробки при заглушенном моторе. АКПП автоматически блокируется когда выключен двигатель. То есть, чтобы перевести селектор в положение Drive из положения Parking, нужно сначала завести мотор, при заглушенном моторе сделать этого не получится. Но если нажать кнопку Shift lock, то можно будет перевести селектор в любое положение. При нормальной работе АКПП эту кнопку лучше не использовать, она предназначена для механиков, которые ремонтируют автоматические коробки.
  • Kick-down — «пинок вниз». Нечто вроде пониженной передачи на «механики». Нажатие этой кнопки позволяет резко набрать высокую скорость путем переключения на пониженную передачу. Кнопка находится под педалью газа. При резком нажатии на газ до упора происходит включение kickdown.

Запуск двигателя с АКПП

коробка автомат

В машинах с АКПП есть только две педали для правой ноги водителя: газ и тормоз, сцепления здесь нет. Во время запуска двигателя газ не нажимается, но в большинстве машин нужно нажимать педаль тормоза, иначе автомобиль не заведется.

Автомобили с АКПП имеют встроенную блокировку начала движение при неправильном положении ручки селектора. Автомобиль с автоматической коробкой можно завести только если рычаг коробки находится в положении «P» — стоянка или «N» — нейтралка. Во всех других положениях рычага машину завести не получится.

Эта функция особенно полезна для начинающих водителей, которые могут забыть перевести рычаг в нужное положение и машина при запуске зажигания дернется вперед или назад и во что-нибудь врежется.

Большинство автопроизводителей рекомендуют всегда оставлять машину на стоянке в режиме «P» и трогаться только с этого положения.

Опытные водители советуют всегда нажимать тормоз при запуске двигателя: это убережет от движения машины на нейтральной передаче в положении «N». Также без нажатия на тормоз не получится перевести селектор в положение «D» — начало движения и «R» — задний ход.

Есть небольшие различия в том, как заводить автомобиль с автоматической коробкой с бензиновым и дизельным двигателем.

акпп

Запуск бензинового двигателя

  • Вставить ключ в замок зажигания.
  • Селектор должен стоять в положении «Парковка».
  • Нажать на педаль тормоза.
  • Повернуть ключ зажигания не отпуская педаль тормоза.
  • Дать некоторое время прогреться двигателю и коробке передач (особенно в зимнее время), чтобы масло стало более текучим. Прогрев занимает около 5 минут, или нужно дождаться прогрева масла до 70ºС, если такая информация выводится на монитор.
  • Ручку селектора надо провести по всем положениям, чтобы масло распределилось равномерно во всем узлам коробки.
  • Отпустить педаль тормоза и перевести селектор в положение Drive, машина начнет движение.

Запуск дизельного двигателя

Автомобили с дизельным двигателем оснащены свечами накала, и перед началом движения их надо прогреть.

  • Вставить ключ в замок зажигания.
  • Селектор должен стоять в положении «Парковка».
  • Подождать некоторое время пока на мониторе не погаснет индикатор работы свечей накала. Если на улице ниже 20ºС, то рекомендуется повторить прогрев свечей еще 1-2 раза.
  • Нажать на педаль тормоза.
  • Повернуть ключ зажигания не отпуская педаль тормоза.
  • Теперь также как и с бензиновым двигателем надо дать мотору прогреться и пройтись ручкой селектора по всем положениям для распределения масла.
  • Отпустить педаль тормоза, перевести селектор в положение Drive, машина тронется.

После поворота ключа в замке зажигания перед запуском стартера лучше подождать несколько секунд для запуска бензонасоса.

Езда на автомобиле с АКПП и остановка

коробка автомат

После того, как вы завели двигатель, перевели ручку коробки передач в положение «D», отпустили педаль тормоза, машина начинает движение с маленькой скоростью около 5 км/ч. Нажимаем на педаль газа и машина ускоряется. Чем сильнее нажимать на педаль газа, тем быстрее будет ехать машина.

Чтобы сбросить скорость движения автомобиля нужно убрать ногу с педали газа, автомат включит пониженную передачу и скорость движения снизится. Для быстрого снижения скорости надо нажать на педаль тормоза.

Чтобы остановить автомобиль надо скинуть газ и нажать тормоз. Автомобиль остановится. Если вы планируете оставить машину на стоянке, то надо при нажатой педали тормоза перевести ручку селектора в положение — «P» (паркинг), и заглушить двигатель.

Если вы остановились на светофоре или стоите в пробке, то переводить ручку в положение «паркинг» не нужно. Она остается в положении «D». Для начала движения отпускаете тормоз и нажимаете газ.

Иногда для езды удобен режим «M» (ручной режим). Он включается во время движения в положении «D». Переключение скоростей происходит с помощью кнопок «+» и «-», расположенных на рычаге переключения передач. Этот режим используется во время езды по плохой грунтовой дороге на пониженной передаче внатяг, чтобы избежать пробуксовки. А также во время крутого подъема и крутого спуска.

Что нельзя делать с АКПП

коробка автомат

Чтобы автоматическая коробка прослужила долго и не ломалась, нельзя делать некоторые вещи.

  • Заводить автомобиль с АКПП с «толкача». Такой запуск вдвое сократит жизнь автоматической коробки передач.
  • Нельзя ездить в положении ручки «P» (паркинг).
  • Использовать положение «N» (нейтралка) для спуска с горки. Особенно если включить этот режим прямо на ходу из положения «D». В таком случае машина может заглохнуть, отключается гидроусилитель руля и тормозов, машина становится практически неуправляемой.
  • Использовать положение «N» во время обычного движения.
  • Включать положение «R» (задний ход) до окончательной остановки машины.
  • Включать положение «D» (драйв) во время движения задним ходом до полной остановки машины.
  • Буксировать машину большего веса чем ваша.
  • Буксировать машину с АКПП на расстояние больше 40-50 км при скорости больше 50 км/ч. В буксируемой машине с заглушенным двигателем в автоматической коробке не создается нужного давления масла, поэтому все детали в ней вращаются без нужного количества смазки, что приводит к быстрому износу.

На первый взгляд автоматическая коробка передач представляется неким очень сложным механизмом, управлять которым и поддерживать в рабочем состоянии, очень трудно. На самом деле это не так. Для тех водителей, которые долгое время ездили на механике, период привыкания к автомату может быть немного тяжеловат. Но те, кто всегда ездил только на автомате, считают, что автомобиль с АКПП намного проще в управлении.

Описание работы и устройство АКПП — Энциклопедия японских машин — на Дром

Для понимания сути автоматической трансмиссии сравним её с простой механической трансмиссией. Рассмотрим вкратце главные компоненты автоматической трансмиссии и функции, которые они выполняют ( рис. 1)

Рис.1. Главные компоненты автоматической трансмиссии :

1) Гидротрансформатор (ГТ) – соответствует сцеплению в механической трансмиссии , но не требует непосредственного управления со стороны водителя.
2) Планетарный ряд — соответствует блоку шестерен в механической коробке передач и служит для изменения передаточного отношения в автоматической трансмиссии при переключении передач.
3) Тормозная лента, передний фрикцион, задний фрикцион – компоненты, посредством которых осуществляется переключение передач.
4) Устройство управления – осуществляет контроль за переключением передач в трансмиссии со встроенной электронной системой управления.
Автоматическая трансмиссия переключает передачи самостоятельно в зависимости от скорости автомобиля и обеспечивает водителю приятные и комфортные условия для вождения автомобиля. От водителя лишь требуется вручную выбрать направление движения машины: вперёд или назад.

Гидротрансформатор (ГТ) (или torque converter в зарубежных источниках) служит для передачи крутящего момента непосредственно от двигателя к элементам автоматической коробки передач (АКП) и состоит из следующих основных частей (рис. 2):
— насосное колесо или насос (pump);
— плита блокировки ГТ (lock — up piston);
— турбинное колесо или турбина (turbine);
— статор (stator);
— обгонная муфта (one — way clutch).

Рис. 2. Общее устройство гидротрансформатора

Для иллюстрации принципа действия ГТ как элемента, передающего крутящий момент, воспользуемся примером с двумя вентиляторами (рис.3). Один вентилятор (насос) включён в сеть и создаёт поток воздуха. Второй вентилятор (турбина) — выключен, однако, его лопатки, воспринимая поток воздуха, создаваемого насосом, вращаются. Скорость вращения турбины меньше, чем у насоса, она как бы проскальзывает по отношению к насосу. Если применить этот пример по отношению к ГТ, то в нём в качестве вентилятора, включённого в сеть (насоса), выступает крыльчатка насосного колеса.

Рис. 3. Пример с вентиляторами

Насосное колесо механически связано с двигателем. В качестве выключенного вентилятора (турбины) выступает турбинное колесо, соединённое через шлицы с валом АКП. Подобно вентилятору — насосу, крыльчатка насосного колеса ГТ, вращаясь, создаёт поток, только уже не воздуха, а жидкости (масла). Поток масла, как и в случае с вентилятором — турбиной, заставляет вращаться турбинное колесо ГТ. В данном случае ГТ работает как обыкновенная гидромуфта, лишь передавая посредством жидкости крутящий момент от двигателя на вал АКП, не увеличивая его. Увеличение оборотов двигателя не приводит к сколь — ни будь существенному увеличению передаваемого крутящего момента.
Снова возвратимся к иллюстрации с вентиляторами. Поток воздуха, крутящий лопатки вентилятора — турбины, рассеивается впустую в пространстве. Если же этот поток, сохраняющий значительную остаточную энергию, направить снова к вентилятору — насосу, он начнёт вращаться быстрее, создавая более мощный поток воздуха, направленный к вентилятору — турбине. Тот, соответственно, тоже начнёт вращаться быстрее. Это явление известно как преобразование (увеличение) крутящего момента.

В ГТ в процесс преобразования крутящего момента помимо насосного и турбинного колёс включён статор, который изменяет направление потока жидкости. Подобно воздуху, вращавшему лопатки вентилятора — турбины, поток жидкости (масла), вращавший турбинное колесо ГТ, всё ещё обладает значительной остаточной энергией. Статор направляет этот поток обратно на крыльчатку насосного колеса, заставляя её вращаться быстрее, увеличивая тем самым крутящий момент. Чем меньше скорость вращения турбинного колеса ГТ по отношению к скорости вращения насосного колеса, тем большей остаточной энергией обладает масло, возвращаемое статором на насос, и тем большим будет момент, создаваемый в ГТ.

Читать статью  Как работает механическая коробка передач: подробно и наглядно

Рис. 4. Статор ГТ удерживается обгонной муфтой Рис. 5. Статор ГТ вращается свободно

Турбина всегда имеет скорость вращения меньшую, чем насос. Это соотношение скоростей вращения турбины и насоса максимально при неподвижном автомобиле и уменьшается с увеличением его скорости. Поскольку статор связан с ГТ через обгонную муфту, которая может вращаться только в одном направлении, то, благодаря особой форме лопаток статора и турбины поток масла направляется на обратную сторону лопаток статора (рис. 4), благодаря чему статор заклинивается и остаётся неподвижным, передавая на вход насоса максимальное количество остаточной энергии масла, сохранившееся после вращения им турбины. Такой режим работы ГТ обеспечивает максимальную передачу им крутящего момента. Например, при трогании с места ГТ увеличивает крутящий момент почти в три раза.
По мере разгона автомобиля проскальзывание турбины относительно насоса уменьшается и наступает момент, когда поток масла подхватывает колесо статора и начинает вращать его в сторону свободного хода обгонной муфты (см. рис. 5). ГТ перестаёт увеличивать крутящий момент и переходит в режим обычной гидромуфты. В таком режиме ГТ имеет КПД, не превышающий 85%, что приводит к выделению в нём излишнего тепла и, в конечном счёте, увеличению расхода топлива двигателем автомобиля.

Для устранения этого недостатка используется блокировочная плита (см. рис. 6а ). Она механически связана с турбиной, однако, может перемещаться влево и вправо. Для её смещения влево поток масла, питающий ГТ, подаётся в пространство между плитой и корпусом ГТ, обеспечивая их механическую развязку, то есть, плита в таком положении никак не влияет на работу ГТ.
При достижении автомобилем высокой скорости по особой команде от устройства управления АКП поток масла изменяется так, что он прижимает блокировочную плиту вправо к корпусу ГТ ( см. рис. 6б ). Для увеличения силы сцепления на внутреннюю сторону корпуса наносится фрикционный слой. Происходит механическая блокировка насоса и турбины посредством плиты. ГТ перестаёт выполнять свои функции. Двигатель жёстко связывается с входным валом АКП. Естественно, при малейшем торможении автомобиля блокировка немедленно выключается.

Существуют и другие способы блокировки ГТ, однако, суть всех способов одна — исключить проскальзывание турбины относительно насоса. В зарубежных источниках такой режим работы ГТ называется Lock — up ( лок — ап)
Корпус ГТ выполняет ещё одну очень важную функцию. С его помощью осуществляется привод масляного насоса АКП. Для этого используется дополнительный валик, размещённый внутри вала турбины. С корпусом ГТ этот валик связан шлицевым соединением. Во многих АКП масляный насос вращается непосредственно горловиной ГТ.

1) Необходимость планетарных рядов .
Хотя ГТ и способен увеличивать крутящий момент, система планетарных рядов в АКП необходима по следующим причинам:
— при преодолении автомобилем подъёмов или во время его резкого разгона в трансмиссии необходимо создать крутящий момент больший, чем может создать один ГТ;
— автомобиль должен быть способен двигаться не только вперёд, но и назад.
2) Планетарные ряды .
В отличие от простой механической трансмиссии, в которой используются параллельные валы и сцепляющиеся между собой шестерни, в автоматических трансмиссиях в подавляющем большинстве используются планетарные передачи.
Преимущества планетарной передачи заключаются в её компактности, использовании лишь одного центрального вала и в способе переключения передач, осуществляемом путём блокировки одних и разблокировании других элементов планетарного ряда.
В автомобиле с простой механической трансмиссией водитель для переключения передач вынужден постоянно и последовательно выжимать педаль сцепления и отпускать педаль газа. Автоматическая трансмиссия автоматически переключает передачи в нужное время. Для этого водителю достаточно манипулировать лишь педалью газа, нажимая или отпуская её.
Планетарная передача обеспечивает ровное, без рывков, переключение скоростей движения автомобиля без потерь мощности двигателя, толчков и ударов, обычно ассоциируемых с моментом переключения передачи в простой трансмиссии.
3) Структура и теория планетарного ряда .
Планетарный ряд (planetary gear, см. рис. 7) состоит из следующих элементов:
— солнечной шестерни (sun gear);
— сателлитов (pinion gears);
— эпицикла (internal gear);
— водила (carrier).

Рис. 7. Планетарный ряд

Рис. 8. Принцип 2-й передачи в АКП

Солнечная шестерня находится в центре. Сателлиты вращаются вокруг солнечной шестерни, в то время как она вращается вокруг своей собственной оси. Эпицикл охватывает сателлиты, которые поддерживают водило. Все сателлиты вращаются одновременно и в одном направлении.
Переключение скорости вращения в планетарном ряду происходит тогда, когда 2 из 3 — х элементов планетарного ряда (солнечная шестерня, эпицикл, водило) находятся в определённых условиях — блокированы или разблокированы в различной комбинации. Что же это за условия?
Рассмотрим простой пример. На рис. 8 показан шарик С между досками А и В. Доска В зафиксирована неподвижно, а доска А двигается в направлении, показанном стрелкой. В этом случае шарик с двигается в том же направлении, что и доска А, только медленнее её.
Если применить этот пример к планетарному ряду, то в качестве доски А выступит эпицикл, в качестве доски В — солнечная шестерня и в качестве шарика С — сателлиты. Если зафиксировать солнечную шестерню и повернуть эпицикл в направлении стрелки, сателлит будет вращаться в том же направлении, что и эпицикл. Однако, как и в случае с досками и шариком, сателлит вращается медленнее, чем эпицикл. Такое соотношение скоростей вращения эпицикла и сателлитов в планетарном ряду АКП осуществляется на второй передаче

Рис. 9. Принцип 1-й или пониженной передачи в АКП

Подумаем, что произойдёт, если заставить двигаться сателлиты, а, следовательно, и водило, ещё медленнее. В предыдущем примере доска В была зафиксирована, а доска А — двигалась. На этот раз будем медленно двигать доску В в направлении, противоположном движению доски А. Как показано на рис. 9, шарик движется медленнее, чем в предыдущем случае. Что при этом происходит в планетарном ряде?
Скорость, с которой водило (шарик) передвигается эпициклом (доской А), уменьшается по отношению к скорости вращающейся в обратном направлении солнечной шестерни (доски В). В результате, скорость вращения водила меньше, чем в предыдущем случае со второй передачей. Такое соотношение скоростей водила и эпицикла осуществляется при включении в АКП первой или пониженной (low gear) передачи.

Рис. 10. Принцип 3-й передачи в АКП

Что произойдёт, если двигать доску А и доску В в одинаковом направлении и с одинаковой скоростью? Шарик С между досками не может двигаться самостоятельно, следовательно, он двигается вместе с ними (рис. 10). Если в планетарном ряду эпицикл и солнечная шестерня вращаются в одинаковом направлении и с одинаковой скоростью, водило вращается в том же направлении и с той же скоростью. Такое соотношение скоростей данных элементов планетарного ряда осуществляется при включённой третьей (drive) передаче.

Рис. 11. Принцип задней передачи в АКП

Попробуем двигать доску В в направлении, показанном стрелкой (рис. 11). Шарик С остаётся неподвижным, вращаясь только вокруг своей оси. В этом случае доска А двигается в направлении, противоположном направлению движения доски В. Применим эту ситуацию к планетарному ряду. Если водило зафиксировано и солнечная шестерня вращается по часовой стрелке (рис. 11), сателлиты вращаются и двигают эпицикл против часовой стрелки. В этом случае, если считать, что солнечная шестерня передаёт входной момент, а эпицикл — выходной, то применительно к автоматической трансмиссии получим передачу заднего хода (reverse gear).

Рис. 12. Принцип 4-й передачи в АКП

Наконец зафиксируем доску В и будем двигать шарик С в направлении стрелки (рис. 12). Тогда доска А двигается с большей скоростью и в том же направлении, что и шарик. Снова применим эту ситуацию к планетарному ряду. Если солнечная шестерня (доска В) заблокирована, а водило (шарик С) вращается по часовой стрелке (рис. 12), сателлиты вращаются в том же направлении вокруг солнечной шестерни. Скорость вращения эпицикла складывается из собственной скорости вращения сателлитов и скорости их вращения вокруг неподвижной солнечной шестерни. Другими словами, эпицикл вращается быстрее, чем водило. Такое соотношение в трансмиссии характерно для четвёртой (overdrive) передачи.

Схема планетарного ряда

Как правило, для переключения передач в 3 — скоростной автоматической трансмиссии используются 2 планетарных ряда, в 4 — скоростной — 3 планетарных ряда, но бывают и исключения, например, АКП AXOD (Ford).

Рассмотрим механизмы, посредством которых осуществляется блокировка различных элементов планетарного ряда в АКП и, следовательно, включение (выключение) различных передач. Этими механизмами являются тормоза и фрикционы.
Тормоз — это механизм, посредством которого осуществляется блокировка элементов планетарного ряда на неподвижный корпус АКП.
Фрикцион — это механизм, посредством которого подвижные элементы планетарного ряда блокируются между собой.

1) Тормозная лента (brake band).

Тормозная лента служит для временной блокировки элементов планетарного ряда на корпус АКП. Несмотря на свои небольшие размеры, лента обладает весьма сильной удерживающей способностью. Подобно тормозным башмакам, она использует для блокировки эффект самозажатия. Когда тормозная лента отпускается, толчок, возникающий при переключении передач, смягчается, поскольку элемент планетарного ряда, который удерживала лента, начинает вращаться в сторону, противоположную направлению приложения силы торможения ленты. Другими словами, когда лента отпускается, она стремится освободить себя быстрее.

Итак, перечислим основные достоинства тормозной ленты:
— несмотря на небольшой размер, она обладает большой удерживающей способностью;
— она подходит для блокировки вращающихся элементов планетарного ряда АКП на корпус АКП;
— она смягчает толчки и удары, возникающие при переключении передач.

Принцип действия тормозной ленты.

Один конец тормозной ленты крепится неподвижно на корпусе АКП, другой — к поршню сервопривода. Когда масло подаётся в полость включения сервопривода (рис.13), поршень сервопривода, передвигаясь под давлением масла (по рисунку влево), зажимает тормозную ленту, осуществляя тем самым блокировку элемента планетарного ряда. При подаче масла в полость отключения сервопривода давление масла в обеих полостях выравнивается, поршень сервопривода под действием возвратной пружины возвращается в исходное положение (вправо), тормозная лента высвобождается.

Рис. 13. Тормозная лента .

2) Система фрикционов (clutch system).

Целесообразность использования фрикционных дисков в автоматических трансмиссиях обусловлена их следующими преимуществами:
— способность выдерживать большие нагрузки;
— значительная степень свободы при их подборе (количество дисков можно увеличивать или уменьшать;
— нет необходимости в регулировке пакета фрикционов из — за износа дисков;
— способность прочного сцепления ведущих (drive plate) и ведомых (driven plate) дисков в пакете при больших скоростях вращения элементов планетарного ряда;
— хотя пакет фрикционов подвергается значительным нагрузкам, он не воздействует с такими же нагрузками на корпус АКП (в отличие от тормозной ленты, где большие нагрузки концентрируются в месте его крепления к корпусу АКП).

Принцип действия фрикционов.

Пакет фрикционов состоит из частей, показанных на рис. 14. Входной крутящий момент передаётся с барабана (drum) на ведущие диски. Ведомые диски поддерживаются втулкой (hub), которая передаёт выходной крутящий момент. Поршень (piston) приводится в действие давлением масла. Двигаясь под давлением масла вправо (по рисунку), поршень посредством конического диска (dished plate) плотно прижимает ведущие диски пакета к ведомым. Заставляя их вращаться как единое целое и осуществляя передачу крутящего момента от барабана к втулке. Как только давление масла падает, поршень под действием возвратной пружины (return spring) перемещается влево, ведущие и ведомые диски разжимаются, крутящий момент через пакет больше не передаётся.

Рис. 14. Составные части фрикциона .

Даже когда фрикцион выключен, в барабане, который вращается с большой скоростью, масло, оставшееся между барабаном и втулкой, отбрасывается под действием центробежной силы к внутренней стенке барабана. Вследствие этого возникает остаточное давление масла, которое прикладывается к поршню, вынуждая его к перемещению и подвключению фрикциона. Это приводит к преждевременному износу дисков и прочим неприятностям. Существуют 2 метода устранения подобного явления (рис. 15).

Метод 1 .
Используется контрольный шарик (check ball). Когда давления масла под поршнем нет (фрикцион выключен), центробежная сила вынуждает шарик переместиться со своего седла (по рисунку — влево), освобождая отверстие, через которое оставшееся в барабане масло вытекает из полости между поршнем и барабаном наружу. Когда в эту полость подаётся масло (фрикцион включается), его давление превышает центробежную силу и шарик под давлением масла возвращается на своё седло. Перекрывая отверстие для вытекания масла наружу.
Метод 2 .
Масло из полости между поршнем и барабаном вытекает наружу через отверстие (orifice). Воздух в эту полость поступает через секцию с контрольным шариком, которая ближе к оси вращения барабана. При таком способе при включении фрикциона всегда будет небольшая утечка масла. Но, поскольку масляный насос поддерживает постоянное давление масла в гидравлической системе, такая утечка не является проблемой.

Рис. 15. Методы устранения подвключения выключенного фрикциона .

3) Обгонная муфта (one — way clutch).

Обгонная муфта может вращаться лишь в одном направлении. Она состоит из подвижного внутреннего кольца (inner race), зафиксированного наружного кольца (outer race) и кулачков (рис.16).

Рис. 16. Обгонная муфта .

Принцип действия.
Когда внутреннее кольцо вращается по часовой стрелке, оно проскальзывает через кулачок (см. рис. 16). Когда же внутреннее кольцо пытается вращаться против часовой стрелки, оно поднимает кулачок и он, заклиниваясь, не даёт кольцу возможности вращаться в этом направлении.

В отличие от шестерёнчатого насоса, производительность которого зависит от числа оборотов двигателя, производительность лопастного насоса возрастает пропорционально числу оборотов двигателя лишь до определённой величины этих оборотов. По достижении двигателем таких оборотов количество масла, перекачиваемое лопастным насосом, больше не растёт, а составляет определённую постоянную величину (рис. 17), то есть линейное давление в гидравлической системе трансмиссии будет постоянным. Это уменьшает потери мощности в системе, возникающие при перекачке большего, чем необходимо, количества масла

Рис. 17

Принцип действия лопастного масляного насоса переменной производительности заключается в следующем. Когда обороты двигателя невелики, золотник насоса находится в положении, показанном на рис. 18а и 18б, и количество перекачиваемого насосом масла увеличивается пропорционально росту числа оборотов двигателя. При достижении определённой величины оборотов двигателя давление Р преодолевает давление Р1, пружина (spring) 2 сжимается и золотник движется, как показано на рис. 18в и 18г. В этой позиции золотника масло перетекает из канала а в канал b и далее в канал контроля количества масла (volume control passage), откуда направляется в камеру переменного объёма (variable chamber) насоса. Кулачок (cam ring) эксцентрика под воздействием возросшего давления масла в камере поворачивается на ролике (pivot roller), сжимая пружину (spring) 1 и уменьшая величину эксцентриситета насоса. Следовательно, производительность насоса уменьшается, соответственно, уменьшается давление масла в магистрали.

При работе масляного насоса масло закачивается из масляного поддона (oil pan) в каналы масляной магистрали. Слив избыточного масла в поддон через каналы А и В перекрыт золотником масляного клапана (рис. 19). Золотник удерживается в таком положении пружиной, когда количество перекачиваемого масла невелико. При увеличении числа оборотов двигателя и, следовательно, масляного насоса, количество масла, проходящего через клапан регулировки давления, увеличивается. Давление в полости С клапана увеличивается, вынуждая золотник перемещаться вниз ( по рисунку), открывая канал для слива избыточного количества масла из полости А в полость В и далее в поддон. Таким образом, поддерживается постоянное давление масла, называемое линейным давлением. Масло под таким давлением подаётся также в ГТ.

рис. 19. Клапан регулировки линейного давления масла.

3) Дроссельный клапан (throttle valve).

В целях обеспечения комфортного вождения автомобиля необходимо обеспечить правильное соотношение линейного давления масла и нагрузки на двигатель. Это соотношение регулирует дроссельный клапан. Дроссельный клапан регулирует линейное давление, которое подаётся на клапаны переключения передач и балансируется в них давлением, создаваемым центробежным регулятором (governor- ом). В общем, дроссельный клапан связан с дроссельной заслонкой двигателя и предназначен для определения нагрузки на двигатель и создания соответствующего этой нагрузке давления масла в гидравлической системе.

Существуют 2 типа дроссельных клапанов:
— вакуумный;
— механически соединённый с педалью акселератора (газа).

Рассмотрим вкратце каждый из этих типов.
Вакуумный дроссельный клапан (vacuum throttle valve) осуществляет свои функции через вакуумную диафрагму и шток. Разрежение, создаваемое при работе двигателя в его впускном коллекторе, напрямую прикладывается к диафрагме дроссельного клапана. Степень разрежения обратно пропорциональна величине угла открытия дроссельной заслонки двигателя. Принцип действия вакуумного дроссельного клапана таков.
Шток клапана прижимается вниз силой Fs, которая возникает вследствие разницы силы пружины и силы разрежения, приложенной к диафрагме (рис. 20). Сила Fs уравновешена силой давления масла Ft, направленной вверх. Канал поступления дополнительного количества масла от масляного насоса перекрыт. При нажатии на педаль газа дроссельная заслонка открывается, разрежение во впускном коллекторе двигателя уменьшается, соответственно, увеличивается сила Fs, которая, преодолевая силу давления масла Ft, перемещает шток дросселя вниз, открывая проход для дополнительного количества масла от масляного насоса. Давление на выходе дроссельного клапана увеличивается.

Читать статью  Виды и особенности коробок передач Митсубиси Лансер

Рис. 20. Вакуумная диафрагма.

Механический дроссельный клапан (mechanical throttle valve).
Принцип действия.
При нажатии на педаль газа механически связанный с ней кулачок дроссельного клапана, поворачиваясь, передвигает вправо плунжер, который, в свою очередь, сжимает пружину А. Под действием пружины А золотник также перемещается вправо, открывая канал 7 поступления масла от магистрали (линейное давление). Линейное давление, поступающее через канал 7, поступает и на выход 20 дросселя (рис. 21а). Так как давление масла в клапане увеличивается, золотник под этим давлением перемещается влево, сжимает пружину А и перекрывает канал 7 ( рис. 21б). Давление в канале 20 дросселя падает. Как только давление в канале 20 упадёт до определённой величины, золотник снова перемещается вправо пружиной А, открывая канал 7 поступления линейного давления масла. Таким образом, дроссельный клапан регулирует давление постоянным перемещением золотника вправо — влево под воздействием давления масла и пружины А. Сила пружины А зависит от степени нажатия педали газа, то есть в нашем случае от угла поворота кулачка. Когда кулачок поворачивается на больший угол, пружина А сжимается плунжером клапана сильнее, поэтому и сила её возрастает, соответственно потребуется большее давление в канале 20 дросселя, чтобы преодолеть силу пружины А и переместить золотник клапана. В результате, пружина А создаёт баланс между педалью газа и давлением на выходе дроссельного клапана.

Рис. 21. Механический дроссельный клапан.

4) Центробежный регулятор (governor), давление регулятора (governor pressure).

Давление центробежного регулятора — это давление масла, которое зависит от скорости автомобиля. Регулятор посылает сигналы в виде различных значений давления масла на клапаны переключения передач (1 — 2, 2 — 3, 3 — 4) для их автоматического включения (выключения).
Существуют 2 типа регуляторов.
Тип А (рис. 22).
Масло, проходя через центр вала в узле регулятора, передвигает золотник по направлению к валу, открывая канал слива масла. Золотник в регуляторе выполняет 2 функции — выступает как элемент, распределяющий потоки масла, и как груз, который может перемещаться под действием центробежной силы. Как только скорость вращения регулятора увеличивается, центробежная сила, возникающая в нём, заставляет золотник перемещаться от вала и закрывать канал слива масла. Давление масла в канале А возрастает

Рис. 22. Центробежный регулятор типа А.

Чувствительность регулятора достаточна при высокой скорости автомобиля, но недостаточна при низкой. Поэтому в регуляторе устанавливаются 2 золотника (груза) — первичный и вторичный. Более тяжёлый первичный золотник работает при малых скоростях автомобиля. При достижении автомобилем определённой скорости первичный золотник становится неэффективным и в работу вступает вторичный золотник. Это даёт возможность регулировать давление регулятора почти в прямой зависимости от скорости автомобиля, будь она низкой или высокой. График зависимости давления, создаваемого центробежным регулятором, от скорости автомобиля показан на рис. 23б.

Тип В (рис. 23а).
Клапан регулятора создаёт своё давление от линейного давления.
1 — я ступень регулирования.
Когда скорость автомобиля невелика, основной и вспомогательный грузы, поднимаясь под действием центробежной силы в направлении стрелки, надавливают на золотник и он перемещается вниз, перекрывая канал слива масла и открывая канал для линейного давления масла. Давление на выходе регулятора быстро увеличивается до тех пор, пока первичный груз не упрётся в ограничитель.
2 -я ступень регулирования.
При высокой скорости автомобиля передвигается только вторичный груз. Величина перемещения золотника при этом меньше, соответственно, давление регулятора возрастает медленнее.

Рис. 23а. Центробежный регулятор типа В .

5) Ручной клапан (manual valve).

Ручной клапан предназначен для реализации команд, поступающих непосредственно от водителя: ехать вперёд, назад или парковать машину. Для передачи своих команд в трансмиссию водитель использует рычаг переключения передач, который в нашем примере может быть установлен в следующие позиции: P, R, N, D, 2 и 1 (рис. 24).

Рис. 24. Ручной клапан.

Рычаг переключения передач механически связан с ручным клапаном. В свою очередь, ручной клапан направляет масло в определённые каналы гидравлической системы трансмиссии, соответствующие каждому положению рычага переключения передач. Давление масла, которое проходит через ручной клапан, является линейным давлением и регулируется клапаном регулировки давления масла.

Что происходит с автомобилем при различных положениях рычага переключения передач?
Р (Park). Трансмиссия в нейтральном положении, выходной вал механически зафиксирован. Двигатель может быть запущен.
R (Reverse). Осуществляется движение автомобиля задним ходом.
N (Neutral). Трансмиссия в нейтральном положении. Двигатель может быть запущен.
D (Drive). Движение вперёд на 1 — ой, 2 — ой, 3 — ей передачах (при 3 — скоростной АКП).
О (Overdrive). Движение вперёд на 1 — ой, 2 — ой, 3 — ей и 4 — ой передачах ( при 4 — скоростной АКП).
2 (Second). Движение вперёд, зафиксированное на 2 — ой передаче.
1 (Low). Движение вперёд, на 1 — ой передаче.

В большинстве АКП клапан регулировки линейного давления масла и ручной клапан находятся в одном узле — клапанном устройстве (valve body).

В разделе «О тормозах и фрикционах» уже объяснялось, что изменение передаточного числа планетарного ряда, то есть переключение передач, осуществляется путём блокирования и разблокирования различных элементов планетарного ряда с помощью тормозных лент и фрикционов. В зависимости от условий вождения, заданных водителем путём выбора определённого положения ручного клапана, клапаны переключения передач приводят в действие тормоза и фрикционы, которые блокируют (разблокируют) необходимые для включения (выключения) конкретной передачи элементы планетарного ряда АКП ( рис. 25)

1. Маховик двигателя. 5. Задний фрикцион. 9. Сателлит. 13. Выходная шестерня.
2. Гидротрансформатор. 6. Соединительный элемент. 10. Тормоза заднего хода и пониженной передачи. 14. Шестерня холостого хода.
3. Передний фрикцион. 7. Эпицикл. 11. Водило (заднее). 15. Парковочная шестерня.
4. Тормозная лента. 8. Водило (переднее). 12. Обгонная муфта. 16. Масляный насос.

В таблице, приведенной ниже, показано, какие в общем случае тормоза и фрикционы задействуются при выборе определённого положения ручного клапана, при включении различных скоростей, а также передаточное отношение в трансмиссии при включении разных передач (задействованные элементы отмечены знаком » + «):

Положение ручного клапана и включён-
ные передачи

Передаточ-
ное отношение
в трансмис-
сии Фрикцион Тормоз пониженной и передачи заднего хода Сервопривод тормозной ленты Обгонная муфта передний задний включен выключен
1 2,841 + + 2 1,541 + + 3 1,000 + + +

2 1,541 + + 1 2,841 + +

Теперь рассмотрим на общем примере вкратце работу гидравлической системы трансмиссии при включении различных передач.

Положение D (1 — я передача).
При выборе водителем положения D ручного клапана линейное давление масла, нагнетаемое масляным насосом, подаётся от линии 7 в линию 1 (рис. 26) и прикладывается к заднему фрикциону, включая его. Включённый задний фрикцион и обгонная муфта обеспечивают блокировку элементов планетарного ряда, необходимых для включения данной передачи.

Рис. 26. Работа гидравлической системы автоматической трансмиссии при включении 1-й передачи .

Положение D (2 — я передача).
Когда скорость автомобиля увеличивается, увеличивается давление, создаваемое регулятором, что приводит к включению клапана переключения 1 — 2 передачи. При включении этого клапана линейное давление от линии 1 (рис. 27) через линии 8 и 9 подаётся в полость включения сервопривода тормозной ленты. При зажатии тормозной ленты соединительный элемент блокируется на корпус АКП.

Рис. 27. Работа гидравлической системы автоматической трансмиссии при включении 2-й передачи .

Положение D (3 — я передача).
С дальнейшим увеличением скорости автомобиля давление, создаваемое регулятором, становится достаточным для включения клапана переключения 2 — 3 передачи. При включении этого клапана линейное давление через линии 3 и 10 прикладывается к переднему фрикциону и в полость выключения сервопривода тормозной ленты (рис. 28). Тормозная лента отпускается, блокировку необходимых элементов планетарного ряда осуществляют передний и задний фрикционы.

Рис. 28. Работа гидравлической системы автоматической трансмиссии при включении 3-й передачи .

Примечание. Приведенный пример носит общий характер. Для каждой конкретной АКП характерны свои передаточные отношения при переключении передач, свои тормоза, фрикционы и элементы планетарных рядов, которые обеспечивают включение (выключение) каждой передачи.

Принцип действия клапана переключения передач.

В зависимости от условий вождения автомобиля АКП выполняет те же самые операции, что и водитель при вождении автомобиля с обычной коробкой передач, то есть включает повышенную передачу при разгоне автомобиля, включает пониженную передачу при торможении автомобиля, преодолении им крутых подъёмов или при перевозке автомобилем больших грузов.

В гидравлической системе АКП механизмом, который непосредственно осуществляет переключение передач, является клапан переключения передач. В 3 — скоростной АКП таких клапанов 2: переключения с 1 — ой на 2 — ю и переключения со 2 — ой на 3 — ю передачу. В 4 — скоростной АКП к упомянутым двум клапанам добавляется третий: переключения с 3 — й на 4 — ю передачу. Рассмотрим принцип действия клапана переключения передач.

Предположим, что дроссельная заслонка двигателя открыта на определённый угол и автомобиль движется на низкой передаче. При этой передаче суммарная составляющая силы пружины Fa , давления, создаваемого дроссельным клапаном Fb и линейного давления Fc , прикладываемых к золотнику клапана переключения передач, вынуждает его перемещаться вправо (рис.29). При увеличении скорости автомобиля пропорционально увеличивается давление Fd , создаваемое центробежным регулятором, которое, преодолевая суммарное воздействие сил Fa , Fb и Fc , вынуждает золотник перемещаться влево. При определённой величине давления Fd золотник переместится влево настолько, что откроется канал, через который линейное давление масла поступит к исполнительным механизмам (тормозам и фрикционам), включающим следующую повышенную передачу. Как только скорость автомобиля уменьшится, давление Fd , создаваемое центробежным регулятором, также уменьшится и золотник клапана под действием сил Fa , Fb и Fc снова переместится вправо, перекрывая канал для линейного давления масла. Повышенная передача выключится.

При торможении автомобиль переходит на пониженную передачу на скорости, которая примерно на 5 км/ч меньше скорости перехода от данной пониженной передачи на следующую повышенную. Это улучшает управляемость автомобилем и снижает расход топлива.

Рис. 29. Принцип действия клапана переключения передач.

1) Клапан подстройки линейного давления масла (pressure modifier valve).

Крутящий момент, передаваемый фрикционами трансмиссии при разгоне автомобиля, отличается от момента, передаваемого при движении с постоянной скоростью. Давление масла, необходимое для включения фрикциона при постоянной скорости автомобиля, меньше давления, необходимого для включения фрикциона при разгоне автомобиля.

Для создания необходимого давления в гидравлической системе используется клапан подстройки линейного давления (рис.30), подстраивающий линейное давление до нужной величины. Когда давление 15, создаваемое центробежным регулятором и воздействующее на правую сторону золотника клапана подстройки давления, невелико, давление 16, создаваемое дроссельным клапаном плюс сила пружины, вынуждает золотник клапана подстройки перемещаться вправо. В результате, проход масла из магистрали 16 (давление дроссельного клапана) в магистраль 18 (линейное давление) перекрыт. С увеличением скорости автомобиля увеличивается давление 15 центробежного регулятора. Давление 15 преодолевает давление 16 дроссельного клапана и силу пружины и перемещает золотник клапана подстройки давления влево. Давление 16 поступает в магистраль 18 и, воздействуя на верхнюю часть клапана регулировки давления масла, уменьшает линейное давление масла 7.

Как только скорость автомобиля и давление 15 центробежного регулятора уменьшаются, сила пружины и давление 16 дроссельного клапана преодолевают давление 15 и золотник клапана подстройки давления масла снова перемещается вправо. Масло, создающее давление 18 дроссельного клапана, идёт на слив через секцию пружины. Итак, золотник клапана подстройки линейного давления перемещается только тогда, когда давление центробежного регулятора больше давления дроссельного клапана.

Рис. 30.

2) Аккумулятор (accumulator).

Поршень аккумулятора уменьшает удары при переключении передач, когда включаются фрикционы или тормозная лента. Обычно линейное давление воздействует на удерживающую сторону поршня, вынуждая его прижиматься вниз (рис. 31). Когда линейное давление прикладывается к упомянутым фрикционам и тормозу, оно одновременно воздействует на рабочую поверхность поршня, вынуждая его подниматься вверх. Часть энергии масла при этом теряется, что и смягчает удары при переключении передач.

Рис. 31. Принцип действия аккумулятора.

3) Соленоид кикдауна (kickdown solenoid).

Соленоид кикдауна приводится в действие при резком нажатии водителем педали газа. Когда водитель быстро и полностью нажимает на педаль газа, переключатель соленоида замыкается ею (рис. 32). Напряжение подаётся на соленоид, благодаря чему шток соленоида выдвигается наружу, открывая так называемый клапан кикдауна. Линейное давление 7 подаётся в линию 13 и включает клапаны переключения 1 — 2 и 2 — 3 передач. При отпускании педали соленоид обесточивается и в таком состоянии шток соленоида и клапан кикдауна удерживаются пружиной таким образом, что проход между линиями 4 и 13 открыт, а между линиями 7 и 13 закрыт (см. рис. 28). Линейное давление 4 в этом случае через канал 13 подаётся на клапаны переключения 1 — 2 и 2 — 3 передачи, где оно преодолевает давление 15 центробежного регулятора. В результате в АКП происходит переключение с высшей передачи на низшую (см. принцип работы клапана переключения передач в разделе «Переключение передач в АКП»).

Рис. 32. Соленоид кикдауна.

1) Переключатель блокировки зажигания (inhibitor switch).

Переключатель блокировки зажигания (рис. 33) механически связан с рычагом переключения передач и является частью электрической цепи включения стартера двигателя автомобиля. В целях безопасности он препятствует запуску стартера и, соответственно, двигателя, когда рычаг переключения передач не стоит в положении Р (паркинг) или N (нейтраль). Данный переключатель также используется для включения задних фонарей автомобиля, свидетельствующих о его торможении.


2) Парковочный механизм (parking mechanism).

Парковочный механизм механически блокирует АКП в целях предотвращения скатывания автомобиля при его парковке.
Принцип действия.
При установке рычага переключения передач в положение Р ручной вал (manual shaft) и пластина (plate), поворачиваясь в направлении стрелки, передвигают шток (rod) блокировки через вспомогательный рычаг (parking assist lever) в направлении, показанном на рис. 34. Шток воздействует на кулачок (cam), который толкает парковочный упор (parking pawl) вверх и упор входит в зацепление с парковочной шестерней (parking gear) АКП.
Во всех других положениях рычага переключения передач, кроме Р, парковочный упор удерживается от зацепления с парковочной шестерней возвратной пружиной (return spring).

Рис. 34. Парковочный механизм .

Общая схема автоматической трансмиссии с электронными средствами управления и контроля приведена на рис. 35.

Рис. 35. Схема электронноуправляемой автоматической трансмисси.

Основные различия между гидравлически- и электронноуправляемыми трансмиссиями приведены ниже:

Операция Электронноуправляемая трансмиссия Гидравлически управляемая трансмиссия
Определение скорости автомобиля Величина скорости автомобиля преобразуется в электрические сигналы импульсным генератором. Скорости автомобиля соответствует определённое давление, создаваемое центробежным регулятором.
Определение степени открытия дроссельного клапана Степень открытия дроссельного клапана определяет датчик положения дроссельной заслонки двигателя Степени открытия дроссельного клапана соответствует давление, создаваемое этим клапаном
Переключение передач Блок управления и контроля определяет необходимость в переключении передач на основе электрических сигналов, поступающих от импульсного генератора, датчика положения дроссельной заслонки двигателя и т. д. Для осуществления переключения электрические сигналы из блока посылаются на различные соленоиды. Клапаны переключения передач приводятся в действие совокупностью различных значений давления масла в гидравлической системе трансмиссии (линейного, давления дроссельного клапана, давления центробежного регулятора).
Общая схема действия скорость нагрузка
автомобиля двигателя

скорость нагрузка
автомобиля двигателя

ЭУ- трансмиссия может работать в 3-х режимах: ECONOMY, POWER и HOLD, которые выбираются водителем (рис.36). Работа такой трансмиссии контролируется электронным блоком управления и контроля (компьютером, другими словами) и различными датчиками (см. рис.35).

Рис. 36. Переключатели режимов работы ЭУ-трансмиссии.

Режим ECONOMY.
В этом режиме время переключения передач выбирается оптимальным с целью обеспечения более экономичного режима вождения

Режим POWER.
В этом режиме время переключения передач затянуто с целью обеспечения скорейшего разгона автомобиля.

Режим HOLD.
В этом режиме при рычаге переключения передач, установленном в положение D, в трансмиссии постоянно включена 3-я передача (переключается на 2-ю при скорости автомобиля меньше, чем 20 км/ч). Соответственно, при рычаге переключения передач, установленном в положение 2, постоянно включена 2-я передача, в положение 1 — 1-я передача. Такая особенность ЭУ- трансмиссии полезна тем, что позволяет применять торможение двигателем при спусках с уклонов. Режим HOLD автоматически отключается при выключении зажигания автомобиля.

Основные электронные средства управления и контроля в ЭУ-трансмиссии.

1) Импульсный генератор.
Датчик турбины с зубчатым колесом выдаёт сигнал, величина которого зависит от скорости вращения турбины в гидротрансформаторе трансмиссии (рис.37). Этот сигнал является главным в системе управления параметрами в ЭУ-трансмиссии.

Рис. 37. Импульсный генератор.

Чувствительный ротор установлен на входном валу турбины ГТ и имеет несколько выступов на своей рабочей поверхности. При вращении ротора в момент прохода каждого выступа над датчиком турбины датчик выдаёт в электронный блок управления и контроля импульсный сигнал. Блок по частоте следования импульсов определяет скорость вращения турбины ГТ.

2) Датчик положения дроссельной заслонки.
Датчик представляет собой переменный резистор. Он состоит из рычага, установленного соосно дроссельной заслонке, и переменного резистора для определения степени открытия дроссельной заслонки (рис.38). Сигнал, пропорциональный степени открытия дроссельной заслонки двигателя, посылается в электронный блок управления и контроля. Данный датчик является также датчиком электронной системы впрыска топлива.

Рис. 38.

Переключение передач и блокировка (lock-up) ГТ в ЭУ-трансмиссии основываются на электрических сигналах, поступающих в электронный блок управления и контроля от импульсного генератора и датчика положения дроссельной заслонки.
Датчик холостого хода.
Датчик холостого хода в датчике положения дроссельной заслонки (рис.38) включается, когда дроссельная заслонка двигателя полностью закрыта. Во всех остальных её положениях этот датчик выключен. Датчик также используется как ограничитель хода дроссельной заслонки. Сигналы от датчика посылаются в электронный блок управления и контроля.

3) Соленоид.
Принцип действия.
Когда напряжение подаётся на обмотку соленоида, шток соленоида поднимается вверх и открывает канал для слива масла (рис. 39б). Масло, воздействующее на клапан переключения передач АКП, сливается и золотник клапана под действием пружины перемещается вправо, изменяя направление потоков масла, которые включают (выключают) соответствующие тормоза и фрикционы АКП.

Рис. 39б. Соленоид включен .

Когда напряжение на обмотке соленоида отсутствует, шток соленоида перекрывает канал для слива масла (рис.39а). Давление масла, воздействующее на клапан переключения передачи, преодолевает давление пружины и заставляет золотник клапана перемещаться влево.

Рис. 39а. Соленоид выключен.

Существуют также соленоиды, в которых применяется обратная вышеописанной схема их открытия и закрытия, то есть при подаче напряжения на обмотку соленоида канал для слива масла закрывается, а при обесточивании соленоида — канал открывается.

Источник https://www.autonews.ru/news/6290848a9a794717108c515f

Источник https://autoexpertjournal.ru/akpp/

Источник https://enc.drom.ru/2994/

Понравилась статья? Поделиться с друзьями: