Принцип работы дизельного двигателя – детали и их назначение + видео

ДИЗЕЛЬНЫЙ ДВИГАТЕЛЬ — ПРИНЦИП РАБОТЫ.

На первый взгляд дизельный двигатель почти не отличается от обычного бензинового — те же цилиндры, поршни, шатуны. Главные и принципиальные отличия заключаются в способе образования и воспламенения топливо-воздушной смеси. В карбюраторных и обычных инжекторных двигателях приготовление смеси происходит не в цилиндре, а во впускном тракте. В бензиновых двигателях с непосредственным впрыском смесь образуется так же как и в дизелях- непосредственно в цилиндре. В бензиновом моторе топливо-воздушная смесь в цилиндре воспламеняется в нужный момент от искрового разряда. В дизеле же топливо воспламеняется не от искры, а вследствие высокой температуры воздуха в цилиндре.
Рабочий процесс в дизеле происходит следущим образом: вначале в цилиндр попадает чистый воздух, который за счет большой степени сжатия (16-24:1) разогревается до 700-900°С. Дизтопливо впрыскивается под высоким давлением в камеру сгорания при подходе поршня к верхней мертвой точке. А так как воздух уже сильно разогрет, после смешивания с ним происходит воспламенение топлива. Самовоспламенение сопровождается резким нарастанием давления в цилиндре — отсюда повышенная шумность и жесткость работы дизеля. Такая организация рабочего процесса позволяет использовать более дешевое топливо и работать на очень бедных смесях, что определяет более высокую экономичность. Дизель имеет больший КПД (у дизеля – 35–45%, у бензинового – 25–35%) и крутящий момент. К недостаткам дизельных двигателей обычно относят повышенную шумность и вибрацию, меньшую литровую мощность и трудности холодного пуска. Но описанные недостатки относятся в основном к старым конструкциям, а в современных эти проблемы уже не являются столь очевидными.
КОНСТРУКЦИЯ.

Как уже отмечалось, конструкция дизельного двигателя подобна конструкции бензинового двигателя. Однако аналогичные детали у дизеля существенно усилены, чтобы воспринимать более высокие нагрузки — ведь степень сжатия у него намного выше (16-24 единиц против 9-11 у бензинового). Характерная деталь в конструкции дизелей — это поршень. Форма днища поршней у дизелей определяется типом камеры сгорания, поэтому по форме легко определить, какому двигателю принадлежит данный поршень. Во многих случаях днище поршня содержит в себе камеру сгорания. Днища поршней находятся выше верхней плоскости блока цилиндров, когда поршень находится в верхней точке своего хода. Так как воспламенение рабочей смеси осуществляется от сжатия, в дизелях отсутствует система зажигания, хотя свечи могут применяться и на дизеле. Но это не свечи зажигания, а свечи накаливания, которые предназначены для подогрева воздуха в камере сгорания при холодном пуске двигателя.
Поршни и свечи дизеля
Технические и экологические показатели автомобильного дизельного двигателя в первую очередь зависят от типа камеры сгорания и системы впрыскивания топлива.

ТИПЫ КАМЕР СГОРАНИЯ.

Форма камеры сгорания значительно влияет на качество процесса смесеобразования, а значит и на мощность и шумность работы двигателя. Камеры сгорания дизельных двигателей разделяются на два основных типа: неразделенные и разделенные.
Несколько лет назад на рынке легкового машиностроения доминировали дизели с разделенными камерами сгорания. Впрыск топлива в этом случае осуществляется не в надпоршневое пространство, а в специальную камеру сгорания, выполненную в головке блока цилиндров. При этом различают два процесса смесеобразования: предкамерный (его еще называют форкамерным) и вихрекамерный.
Камеры сгорания дизелей
При форкамерном процессе топливо впрыскивается в специальную предварительную камеру, связанную с цилиндром несколькими небольшими каналами или отверстиями, ударяется об ее стенки и перемешивается с воздухом. Воспламенившись, смесь поступает в основную камеру сгорания, где и сгорает полностью. Сечение каналов подбирается так, чтобы при ходе поршня вверх (сжатие) и вниз (расширение) между цилиндром и форкамерой возникал большой перепад давления, вызывающий течение газов через отверстия с большой скоростью.
Во время вихрекамерного процесса сгорание также начинается в специальной отдельной камере, только выполненной в виде полого шара. В период такта сжатия воздух по соединительному каналу поступает в предкамеру и интенсивно закручивается (образует вихрь) в ней. Впрыснутое в определенный момент топливо хорошо перемешивается с воздухом.
Таким образом, при разделенной камере сгорания происходит как бы двухступенчатое сгорание топлива. Это снижает нагрузку на поршневую группу, а также делает звук работы двигателя более мягким. Недостатком дизельных двигателей с разделенной камерой сгорания являются: увеличение расхода топлива вследствие потерь из-за увеличенной поверхности камеры сгорания, больших потерь на перетекание воздушного заряда в дополнительную камеру и горящей смеси обратно в цилиндр. Кроме того, ухудшаются пусковые качества.
Дизельные двигатели с неразделенной камерой называют также дизелями с непосредственным впрыском. Топливо впрыскивается непосредственно в цилиндр, камера сгорания выполнена в днище поршня. До недавнего времени непосредственный впрыск использовался на низкооборотистых дизелях большого объема (проще говоря, на грузовиках). Хотя такие двигатели экономичнее моторов с разделенными камерами сгорания, их применение на небольших дизелях сдерживалось трудностями организации процесса сгорания, а также повышенными шумом и вибрацией, особенно в режиме разгона.
Сейчас благодаря повсеместному внедрению электронного управления процессом дозирования топлива удалось оптимизировать процесс сгорания топливной смеси в дизеле с неразделенной камерой сгорания и существенно снизить шумность. Новые дизельные двигатели разрабатываются только с непосредственным впрыском.

Важнейшим звеном дизельного двигателя является система топливоподачи, обеспечивающая поступление необходимого количества топлива в нужный момент времени и с заданным давлением в камеру сгорания.

Система питания дизеля.

Читайте также:
Насос охлаждающей жидкости (помпа) в автомобиле: что это, для чего нужен, устройство, как работает

Топливный насос высокого давления (ТНВД), принимая горючее из бака от подкачивающего насоса (низкого давления), в требуемой последовательности поочередно нагнетает нужные порции солярки в индивидуальную магистраль гидромеханической форсунки каждого цилиндра. Такие форсунки открываются исключительно под воздействием высокого давления в топливной магистрали и закрываются при его снижении.
Существует два типа ТНВД: рядные многоплунжерные и распределительного типа. Рядный ТНВД состоит из отдельных секций по числу цилиндров дизеля, каждая из которых имеет гильзу и входящий в нее плунжер, который приводится в движение кулачковым валом, получающим вращение от двигателя. Секции таких механизмов расположены, как правило, в ряд, отсюда и название — рядные ТНВД. Рядные насосы в настоящее время практически не применяются ввиду того, что они не могут обеспечить выполнение современных требований по экологии и шумности. Кроме того, давление впрыска таких насосов зависит от оборотов коленвала.
Распределительные ТНВД создают значительно более высокое давление впрыска топлива, нежели насосы рядные, и обеспечивают выполнение действующих нормативов, регламентирующих токсичность выхлопа. Этот механизм поддерживает нужное давление в системе в зависимости от режима работы двигателя. В распределительных ТНВД система нагнетания имеет один плунжер-распределитель, совершающий поступательное движение для нагнетания топлива и вращательное для распределения топлива по форсункам.

Эти насосы компактны, отличаются высокой равномерностью подачи топлива по цилиндрам и отличной работой на высоких оборотах. В то же время они предъявляют очень высокие требования к чистоте и качеству дизтоплива: ведь все их детали смазываются топливом, а зазоры в прецизионных элементах очень малы.
Ужесточение в начале 90-х законодательных экологических требований, предъявляемых к дизелям, заставило моторостроителей интенсивно совершенствовать топливоподачу. Сразу же стало ясно, что с устаревшей механической системой питания эту задачу не решить. Традиционные механические системы впрыска топлива имеют существенный недостаток: давление впрыска зависит от частоты вращения двигателя и нагрузочного режима. Это значит, что при низкой нагрузке давление впрыска падает, в результате топливо при впрыске плохо распыляется, попадая в камеру сгорания слишком крупными каплями, которые оседают на ее внутренних поверхностях. Из-за этого уменьшается КПД сгорания топлива и повышается уровень токсичности отработанных газов.
Кардинально изменить ситуацию могла только оптимизация процесса горения топливо — воздушной смеси. Для чего надо заставить весь её объём воспламениться в максимально короткое время. А здесь необходима высокая точность дозы и точность момента впрыскивания. Сделать это можно, только подняв давление впрыска топлива и применив электронное управление процессом топливоподачи. Дело в том, что чем выше давление впрыска, тем лучше качество его распыления, а соответственно – и смешивания с воздухом. В конечном итоге это способствует более полному сгоранию топливо-воздушной смеси, а значит и уменьшению вредных веществ в выхлопе. Хорошо, спросите вы, а почему бы не сделать такое же повышенное давление в обычном ТНВД и всей этой системе? Увы, не получится. Потому что есть такое понятие, как “волновое гидравлическое давление”. При любом изменении расхода топлива в трубопроводах от ТНВД к форсункам возникают волны давления, “бегающие” по топливопроводу. И чем сильнее давление, тем сильнее эти волны. И если далее повышать давление, то в какой-то момент может произойти обыкновенное разрушение трубопроводов. Ну, а о точности дозирования механической системы впрыска даже и говорить не приходится.
Насос-форсунка
В результате были разработаны два новых типа систем питания – в первом форсунку и плунжерный насос объединили в один узел (насос-форсунка), а в другом ТНВД начал работать на общую топливную магистраль (Common Rail), из которой топливо поступает на электромагнитные (или пьезоэлектрические) форсунки и впрыскивается по команде электронного блока управления. Но с принятием Евро 3 и 4 и этого оказалось мало, и в выхлопные системы дизелей внедрили сажевые фильтры и катализаторы.
Насос-форсунка устанавливается в головку блока двигателя для каждого цилиндра. Она приводится в действие от кулачка распределительного вала с помощью толкателя. Магистрали подачи и слива топлива выполнены в виде каналов в головке блока. За счет этого насос-форсунка может развить давление до 2200 бар. Дозированием топлива, сжатого до такой степени и управлением угла опережения впрыска занимается электронный блок управления, выдавая сигналы на запорные электромагнитные или пьезоэлектрические клапаны насос-форсунок. Насос-форсунки могут работать в многоимпульсном режиме (2-4 впрыска за цикл). Это позволяет произвести предварительный впрыск перед основным, подавая в цилиндр сначала небольшую порцию топлива, что смягчает работу мотора и снижает токсичность выхлопа. Недостаток насос-форсунок – зависимость давления впрыска от оборотов двигателя и высокая стоимость данной технологии.

Система Common Rail.

Система питания Common Rail используется в дизелях серийных моделей с 1997 года. Common Rail – это метод впрыска топлива в камеру сгорания под высоким давлением, не зависящим от частоты вращения двигателя или нагрузки. Главное отличие системы Common Rail от классической дизельной системы заключается в том, что ТНВД предназначен только для создания высокого давления в топливной магистрали. Он не выполняет функций дозировки цикловой подачи топлива и регулировки момента впрыска. Система Common Rail состоит из резервуара – аккумулятора высокого давления (иногда его называют рампой), топливного насоса, электронного блока управления (ЭБУ) и комплекта форсунок, соединенных с рампой. В рампе блок управления поддерживает, меняя производительность насоса, постоянное давление на уровне 1600-2000 бар при различных режимах работы двигателя и при любой последовательности впрыска по цилиндрам. Открытием-закрытием форсунок управляет ЭБУ, который рассчитывает оптимальный момент и длительность впрыска, на основании данных целого ряда датчиков – положения педали акселератора, давления в топливной рампе, температурного режима двигателя, его нагрузки и т. п. Форсунки могуть быть электромагнитными, либо более современными- пьезоэлектрическими. Главные преимущества пьезоэлектрических форсунок — высокая скорость срабатывания и точность дозирования. Форсунки в дизелях c Common rail могут работать в многоимпульсном режиме: в ходе одного цикла топливо впрыскивается несколько раз – от двух до семи. Сначала поступает крохотная, всего около милиграмма, доза, которая при сгорании повышает температуру в камере, а следом идет главный «заряд». Для дизеля — двигателя с воспламенением топлива от сжатия — это очень важно, так как при этом давление в камере сгорания нарастает более плавно, без «рывка». Вследствие этого мотор работает мягче и менее шумно, снижается количество вредных компонентов в выхлопе. Многократная подача топлива за один такт попутно обеспечивает снижение температуры в камере сгорания, что приводит к уменьшению образования окиси азота- одной из наиболее токсичных составляющих выхлопных газов дизеля. Характеристики двигателя с Common Rail во многом зависят от давления впрыска. В системах третьего поколения оно составляет 2000 бар. В ближайшее время в серию будет запущено четвертое поколение Common Rail с давлением впрыска 2500 бар.

Читайте также:
Как проверить гидрокомпенсаторы на работоспособность - инструкции к ВАЗ и иномаркам

Эффективным средством повышения мощности и гибкости работы дизеля является турбонаддув. Он позволяет подать в цилиндры дополнительное количество воздуха и соответственно увеличить подачу топлива на рабочем цикле, в результате чего увеличивается мощность двигателя. Давление выхлопных газов дизеля в 1,5-2 раза выше, чем у бензинового мотора, что позволяет турбокомпрессору обеспечить эффективный наддув с самых низких оборотов, избежав свойственного бензиновым турбомоторам провала — “турбоямы”. Отсутствие дроссельной заслонки в дизеле позволяет обеспечить эффективное наполнение цилиндров на всех оборотах без применения сложной схемы управления турбокомпрессором. На многих автомобилях устанавливается промежуточный охладитель наддуваемого воздуха — интеркулер, позволяющий поднять массовое наполнение цилиндров и на 15-20 % увеличить мощность. Наддув позволяет добиться одинаковой мощности с атмосферным мотором при меньшем рабочем объеме, а значит, снизить массу двигателя. Турбонаддув, помимо всего прочего, служит для автомобиля средством повышения “высотности” двигателя — в высокогорных районах, где атмосферному дизелю не хватает воздуха, наддув оптимизирует сгорание и позволяет уменьшить жесткость работы и потерю мощности. В то же время турбодизель имеет и некоторые недостатки, связанные в основном с надежностью работы турбокомпрессора. Так, ресурс турбокомпрессора существенно меньше ресурса двигателя. Турбокомпрессор предъявляет жесткие требования к качеству моторного масла. Неисправный агрегат может полностью вывести из строя сам двигатель. Кроме того, собственный ресурс турбодизеля несколько ниже такого же атмосферного дизеля из-за большой степени форсирования. Такие двигатели имеют повышенную температуру газов в камере сгорания, и чтобы добиться надежной работы поршня, его приходится охлаждать маслом, подаваемым снизу через специальные форсунки.
Прогресс дизельных двигателей сегодня преследует две основные цели: увеличение мощности и уменьшение токсичности. Поэтому все современные легковые дизели имеют турбонаддув (самый эффективный способ увеличения мощности) и Соmmоn Rail.

Принцип работы дизельного двигателя – чтобы смог понять каждый!

Принцип работы дизельного двигателя выглядит как самовоспламенение подающегося распыленного топлива при взаимодействии с разогретым при сжатии воздухом. В двух словах не совсем понятно, о чем идет речь, поэтому данную статью посвятим полностью дизельному двигателю.

Устройство дизельного двигателя – основные детали

Такие движки обладают как рядом преимуществ, так и рядом недостатков. К первым можно отнести: принцип его работы идеально подходит для тяжелых грузовиков; он более экономичен по сравнению с бензиновым силовым агрегатом. Недостатки: сам процесс сгорания топлива равносилен взрыву, что уже само по себе не может быть достоинством; топливная аппаратура имеет достаточно сложную конструкцию, поэтому, если она выйдет из строя, вам хорошенько придется повозиться; развиваемая скорость будет меньше, чем при работе на бензиновых моторах.

Устройство дизельного двигателя представлено следующим образом. Начинается все с впускного клапана, посредством которого воздух может попасть в рабочие цилиндры. Поршень создает необходимое давление, чтобы попадаемый воздух нагрелся до требуемой температуры, а коленчатый вал воспринимает усилие, поступающее от поршня, и преобразует его в крутящий момент. Вот вкратце так и выглядит работа дизельного двигателя.

Принцип работы дизельного двигателя – выбираем тип камеры сгорания

Области для воспламенения топлива бывают двух типов, в зависимости от вида самого дизельного агрегата. Неразделенная камера сгорания находится в поршне, топливо же в этом случае впрыскивается в надпоршневое пространство. В этом случае вы можете рассчитывать на экономичность, так как расход горючей смеси будет минимальным, однако отрицательным моментом послужит повышенный шум, особенно во время холостого хода.

В разделенных камерах сгорания подача топлива осуществляется в отдельную камеру, которая посредством специального канала связана с цилиндром. Обеспечивается отличное перемешивание топлива с воздухом, только после этого оно уже подается в рабочее пространство, что способствует более качественному сгоранию смеси. Это повышает чистоту выбросов, долговечность мотора и мощность авто.

Как работает дизельный двигатель – тактность мотора

Схема работы дизельного двигателя бывает двухтактной и четырехтактной. В первом случае работа происходит следующим образом: во время рабочего хода поршень передвигается вниз, при этом открываются выпускные отверстия в цилиндре и из него выходят выхлопные газы. В это же время (иногда чуть позже) открывают ход впускные окна, осуществляется продувка воздухом. Далее поршень начинает движение вверх, все окна закрываются, и происходит процесс сжатия воздуха. Перед тем, как поршень достиг ВМТ (высшая мертвая точка), топливо распыляется из форсунки, происходит взрыв, и весь процесс повторяется заново.

Читайте также:
Датчик температуры выхлопных газов и другие причины запаха в авто + видео

Важно знать, как работает дизельный двигатель и по четырехтактной схеме. В первый такт делается впуск воздуха, в это же время открыт и выхлопной клапан. Второй такт соответствует сжатию воздуха, чтобы он достиг необходимой температуры. На третьем такте впрыскивается горючая смесь в камеру сгорании, и в результате взаимодействия с разогретым воздухом происходит взрыв. Во время четвертого такта осуществляется вывод выхлопных газов из тела цилиндра.

Четырехтактный мотор при прочих равных параметрах имеет меньшую мощность, чем двухтактный, но обладает большим КПД и более эффективной степенью сжигания топлива.

Как устроен дизельный двигатель – современные реалии

Устройство современного дизельного двигателя оснащено компьютерным управлением подачи топлива. Эта система позволяет осуществлять впрыскивание горючей смеси в цилиндры дозированными порциями. Данный момент является весьма важным для дизельных силовых агрегатов, так как при такой подаче давление, возникающее в камере сгорания, нарастает плавно без возникновения разного рода «рывков», а это как нельзя лучше способствует мягкой и бесшумной работе силового агрегата.

Кроме того, благодаря регулируемому впрыску расход топлива сокращается почти на 20 %, при этом возрастает крутящий момент коленчатого вала. Очень важно каждому автолюбителю знать, как устроен дизельный двигатель, а также тенденции его развития. Например, такой популярный в последних моделях дизелей турбонаддув также эффективно повышает качество езды, мощность мотора увеличивается без насилования коленвала, его обороты остаются прежними.

Дизельные двигатели

Дизельным двигателям удалось пройти длительный и успешный путь развития от неэффективных и загрязняющих экологию агрегатов начала двадцатого века, до супер экономных и абсолютно беззвучных, которые сегодня устанавливаются на добрую половину всех выпускаемых автомобилей. Но, несмотря на такие удачные модификации, общий принцип их действия, отличающий дизельные моторы от бензиновых, остался все тем же. Постараемся рассмотреть данную тему подробнее.

В чем основные отличия дизельных двигателей от бензиновых?

Уже видно из самого названия, что дизельные двигатели работают не на бензине, а на дизельном топливе, которое также называют соляркой, ДТ или просто дизелем. Вникать во все подробности химических процессов перегонки нефти мы не будем, скажем только, что и бензин и дизель производят из нефти. Во время перегонки нефть делится на различные фракции:

  • газообразные – пропан, бутан, метан;
  • нарты (короткие цепочки углеводов) – используются для производства растворителей;
  • бензин – взрывоопасная и быстро испаряющая прозрачная жидкость;
  • керосин и дизель – жидкости с желтоватым оттенком и более вязкой структурой, чем у бензина.

То есть солярка производится из более тяжелых фракций нефти, ее важнейшим показателем является воспламеняемость, определяемая цетановым числом. Также ДТ характеризуется большим содержанием серы, которое, однако, стараются всеми силами уменьшать, чтобы топливо соответствовало экологическим стандартам.

Как и бензин, дизель делится на разные виды в зависимости от температурных режимов:

  • летний;
  • зимний;
  • арктический.

Стоит также заметить, что дизельное топливо производят не только из нефти, но и из различных растительных масел – пальмового, соевого, рапсового и др., смешанных с техническим спиртом – метанолом.

Однако, заливаемое топливо – это не главное отличие. Если мы посмотрим на бензиновый и дизельный двигатели “в разрезе”, то разницы никакой визуально не заметим – те же поршни, шатуны, коленчатый вал, маховик и так дальше. Но разница есть и она очень существенная.

Принцип работы дизельного двигателя

В отличие от бензиновых, в дизеле совсем по другому принципу происходит зажигание воздушно-топливной смеси. Если в бензиновых – как в карбюраторных, так и инжекторных – движках сначала происходит приготовление смеси, а затем ее воспламенение с помощью искры от свечи зажигания, то в дизеле в камеру сгорания поршня нагнетается воздух, затем воздух сжимается, разогреваясь до температур 700 градусов, и вот в этот момент в камеру попадает топливо, которое тут же взрывается и толкает поршень вниз.

Дизельные двигатели – четырехтактные. Рассмотрим каждый такт:

  1. Такт первый – поршень движется вниз, открывается впускной клапан, тем самым в камеру сгорания попадает воздух;
  2. Такт второй – поршень начинает подниматься, воздух начинает под давлением сжиматься и разогреваться, именно в этот момент через форсунку впрыскивается солярка, происходит ее возгорание;
  3. Такт третий – рабочий, происходит взрыв, поршень начинает двигаться вниз;
  4. Такт четвертый – открывается выпускной клапан и все отработанные газы выходят в выпускной коллектор или в патрубки турбины.

Конечно, все это происходит очень быстро – несколько тысяч оборотов в минуту, требуется очень слаженная работа и подгонка всех узлов – поршней, цилиндров, распределительного вала, шатунов коленвала, а самое главное датчиков – которые в секунду должны передавать на CPU сотни импульсов для мгновенной обработки и вычисления необходимых объемов воздуха и солярки.

Дизельные двигатели выдают больший коэффициент полезного действия, именно поэтому их используют на грузовых авто, комбайнах, тракторах, военной технике и так далее. ДТ более дешевое, но нужно отметить, что сам двигатель обходится дороже в эксплуатации, потому что уровень компрессии здесь почти в два раза выше, чем в бензиновом, соответственно нужны поршни особой конструкции, а все используемые узлы, детали и материалы усиленные, то есть стоят дороже.

Также очень строгие требования предъявляются к системам подачи топлива и отвода отработанных газов. Ни один дизель не сможет работать без качественного и надежного ТНВД – топливного насоса высокого давления. Он обеспечивает корректную подачу топлива на каждую форсунку. Кроме того на дизелях используются турбины – с их помощью отработанные газы используются повторно, тем самым повышая мощность двигателя.

Читайте также:
Система питания карбюраторного двигателя – диагностика и ремонт + видео

Есть у дизеля и некоторый ряд проблем:

  • повышенный шум;
  • больше отходов – топливо более маслянистое, поэтому нужно регулярно проводить замену фильтров, следить за выхлопом;
  • проблемы со стартом, особенно холодным, используется более мощный стартер, топливо быстро густеет при понижении температуры;
  • дорого обходится ремонт, особенно топливной аппаратуры.

Одним словом – каждому свое, дизельные двигатели характеризуются большей мощностью, ассоциируются с мощными внедорожниками и грузовиками. Для простого же горожанина, который ездит на работу – с работы и по выходным выезжает за город, хватит и маломощного бензинового движка.

Видео, на котором показан весь принцип работы дизельного двигателя внутреннего сгорания

Дизельный двигатель: устройство, принцип работы

Вторым по популярности двигателей внутреннего сгорания является дизельный двигатель, который раньше устанавливался только на грузовые машины. КПД дизеля больше, чем у самого распространенного ДВС — бензинового. При более высоком коэффициенте полезного действия, дизель расходует топлива намного меньше. Такие преимущества инженеры-конструкторы автомобильной промышленности смогли сделать за счет уникальной конструкции.

История создания дизельного двигателя

Двигатели внутреннего сгорания бензинового типа постоянно модифицируются. Конструкторы добиваются улучшения эксплуатационных технических характеристик. Даже с новым прямым впрыском бензиновый ДВС выдает 30% КПД, а дизельный ДВС без турбонаддвува выдает 40% КПД, с турбонаддувом — около 50%.

Поэтому дизельные моторы становятся все более популярными и в Европе, и, вообще, по миру. Бензин дорожает чаще, чем дизтопливо. Все больше людей перед покупкой автомобиля оценивают, какой расход у этого авто. Основной существенный минус дизельных моторов — это большие габариты и большой вес. Поэтому они устанавливались только на грузовики.

Изготовление и обслуживание диз двигателя сложнее, потому что конструкция должна быть такой, чтобы все детали были сделаны с высокой точностью.

История создания

Дизельный двигатель, он же дизель — это поршневой двигатель внутреннего сгорания, принцип работы которого основан на самовоспламенении топлива, распыляющегося сжатым и горячим воздухом. До конца 20 века такой тип ДВС устанавливался на корабли, тепловозы, автобусы, грузовые машины, трактора. С конца 20 века после успешных испытаний начал массово устанавливаться на легковые авто.

По информации из википедии, в 1824 году Сади Карно придумал и сформулировал идею цикла Карно, суть которого заключалось возможности доводить топливо до температуры самовоспламенения резким сжатием.

Спустя 66 лет, Рудольф Дизель в 1890 году предложил реализовать эту идею на практике. 23 февраля 1892 года получил патент (разрешение) на свой двигатель, а в на следующий год выпустил брошюру по своего агрегату. Он запатентовал несколько вариантов.

Успешное испытание дизель-мотора удалось сделать только 28 января 1987 года (до этого попытки были неудачными). После этого Р.Дизель начал продавать лицензии на свое изобретение.Хоть и КПД, и удобство использования нового двигателя было на высоко уровне по сравнению с паровыми агрегатами, новые дизель-устройства были большими по габаритам и тяжелыми (они были больше и тяжелее паровых машин тех времен).

Первоначальной задумкой было то, что топливом должна была быть каменноугольная пыль. Но после испытаний такого вида топлива, оказалось, что каменноугольная пыль очень быстро изнашивает детали двигателя из-за своих абразивных свойств и из-за золы, которая получалась в результате сгорания этой пыли.

Далее, в качестве топлива было использовалось растительное масло и легкие нефтепродукты. Именно на этих видах топлива, испытания ДВС Дизеля прошли успешно.

Инженер Экрой Стюард построил в 1896 году работающий двигатель — полудизель. В этой варианте конструкции ДВС было решено, чтобы воздух втягивался в цилиндр, после чего сжимался поршнем и нагнетался в конце такта сжатия в емкость, в которую распылялось топливо. Чтобы запустить такой мотор, емкость нагревалась лампой снаружи и после запуска двигатель работал сам. Экрой Стюард экспериментировал со сжатием топлива и воздуха в цилиндре. Он хотел исключить свечи зажигания.

Русские в изобретениях не отставали. Вне зависимости от успехов создания ДВС Дизелем, в 1989 году в Петербурге на Путиловском заводе инженер Густав Тринклер придумал и создал первый в мире бескомпрессорный нефтяной двигатель высокого давления, то есть это был двигатель с форкамерой (форкамера — это предварительная камера сгорания, которая по объему составляет 30% от общего объема камеры сгорания). Такой двигатель получил название «Тринклер-мотор».

После сравнения немецкого варианта Дизель-мотора и русского Тринклер-мотора, русский вариант оказался более эффективным. В Тринклер-моторе использовалась гидросистема для нагнетания и распыления топлива — это позволило отказаться от установки дополнительного воздушного компрессора и позволило увеличить число оборотов вала двигателя. В русском варианте в конструкции двигателя не устанавливался воздушный компрессор. Тепло подводилось медленно и дольше, по сравнению с немецким мотором Рудольфа Дизеля. Тринклер-мотор был проще и эффективнее. Но, теми, у кого были лицензии на Дизель-двигатели Рудольфа и Нобелями были вставлены «палки в колеса», чтобы остановить распространение конкурентного варианта мотора. В 1902 году работы по созданию Тринклер-мотора были остановлены.

Читайте также:
Как снять бензобак ВАЗ 2110: замена, ремонт и чистка своими руками + видео

В 1989 году Эммануил Нобель получил лицензию на двигатель Рудольфа Дизеля. Двигатель был доработан и теперь он мог работать на нефти, а не на керосине. В 1899 году Механический завод «Людвиг Нобель», расположенный в Петербурге, начал массовый выпуск таких моторов. В 1900 году в Париже на Всемирной выставке дизельный ДВС получил ГРАН-ПРИ. Перед Всемирной выставкой в Париже, появилась новость, что Нобелевский завод в Петербурге выпускает ДВС, которые работают на сырой нефти. Такой ДВС в Европе начали называть «Русский дизель». Русский инженер по фамилии Аршаулов первым сконструировал и внедрил в систему топливный насос высокого давления (ТНВД). Приводом для ТНВД служил сжимаемый поршнем воздух. ТНВД работал с бескомпрессроной форсункой.

В 20-е годы ХХ века, Роберт Бош доработал встроенный ТНВД. Это устройство используется и в наши дни. Бош также усовершенствовал бескомпрессорную форсунку.

С 50-60 годов 20 века дизельный моторы успешно устанавливаются на грузовые машины и автофургоны.

С 70-х годов из-за удорожания бензинового топлива, на дизельные моторы стали обращать внимание производители легковых автомобилей.

В настоящее время, почти каждая марка авто имеет модификацию с дизельным аппаратом под своим капотом.

Устройство системы дизельного двигателя

Основными элементами диз мотора являются:

  • цилиндро-поршневая группа (цилиндры, поршни, шатуны);
  • топливные форсунки;
  • впускные и выпускные клапана;
  • турбина;
  • интеркулер.

Современный дизельный двигатель в разрезе

Принцип работы дизельного мотора

Основная особенность дизельного ДВС в том, что он воспламенение топливно-воздушной смеси в камерах сгорания происходит за счет сжатия и нагрева. Распыление диз топлива осуществляется через форсунки.

Подача солярки осуществляется только в момент, при котором воздух максимально сжат и имеет максимальную температуру.

Когда воздух горячий, дизельное топливо легко воспламеняется. Перед попаданием топлива в камеры сгорания цилиндров ДВС, оно проходит очищающие фильтры, которые очищают от механических примесей, которые быстро нанесли бы ущерб всему устройству.

Порядок работы дизельной системы:
    1. Воздух подается через впускной клапан при движении поршня вниз.
    2. Далее поршень поднимается вверх и сжимает воздух в 20 раз. Давление в этот момент составляет 40 килограмм на 1 сантиметр. Температура воздуха в этот момент достигает 500 градусов по Цельсию.
    3. Когда воздух сжат и нагрет, форсунки этого цилиндра впрыскивают и распыляют топливо. За счет очень сильно нагретого воздуха дизтопливо воспламеняется. Такой способ работы исключает присутствие в системе свечей зажигания. Также в дизельных агрегатах отсутствует система зажигания. Процесс самовоспламенения солярки с воздухом от свечи накаливания.

    Также, в устройстве нет дроссельной заслонки, благодаря чему обеспечивается большой крутящий момент. Но, число оборотов в это время находится на низком уровне.За один цикл работы дизеля форсунки могут подавать топливо несколько раз.

  1. При воспламенении горючей смеси, взрывная волна толкает поршень вниз. Поршень, который соединен с коленвалом посредством шатуна и вращает коленвал.
  2. Далее, от нижней мертвой точки (НМТ) поршень движется вверх и выталкивает отработанные газы через выпускные клапана.Такой процесс в работе двигателя называют циклом.

Дополнительные компоненты двигателя

Помимо основных деталей, которые обязательно присутствуют в конструкции двигателя, есть еще дополнительные детали и узлы, которые улучшают характеристики и работу ДВС.

Принцип работы турбины

Турбина — это устройство, которое создает дополнительного нагнетание топлива. Двигатель с турбиной имеет большую производительность.

Идея создания турбины появилась при обнаружении такого факта, что при движении поршня вверх, солярка не успевает полностью сгорать.

С помощью турбины, сгорание топлива в цилиндрах происходит до конца, за счет чего уменьшается расход топлива и увеличивается мощность ДВС.

Турбонаддув, он же турбонагнетатель состоит из:
  • подшипники — служит опорой дает возможность вращаться валу;
  • кожух на турбине;
  • кожух на компрессоре;
  • стальная сетка.
Цикл работы турбонаддува:
  1. Компрессор создает вакуум и всасывается воздух внутрь системы.
  2. Ротор турбины передает вращение ротору.
  3. Интеркулер охлаждает воздух.
  4. Через впускной коллектор осуществляется подача воздуха, предварительно воздух проходит степени очистки (воздушные фильтры). После поступления воздуха, впускной клапан закрывается.
  5. Отработанные газы движутся через турбину ДВС и создают давление на ротор.
  6. В этот момент скорость вращения турбины вала турбины очень высока, достигает 1500 оборотов в секунду. От этого начинает вращаться ротор компрессора.

Цикл далее повторяется.

При охлаждении воздуха, его плотность увеличивается. Если плотность воздуха стала больше, значит можно закачать воздух большим объемом. Чем больший поток воздуха подается в камеру сгорания, тем лучше сгорает топливо.

Интеркулер и форсунка

При сжатии плотность воздуха и температура увеличиваются. Это негативно сказывается на межремонтном периоде деталей двигателя. В связи с чем была разработано устройство, которое охлаждает горячий воздушный поток.

В зависимости от модификации дизельных двигателей, в цилиндре топливо может распыляться одной или двумя форсунками.

Форсунки дизеля работают в импульсном режиме.

Вывод

За счет постоянных инженерных внедрений и испытаний, современные дизельные двигатели выдают очень хорошие технические характеристики. Качество сгорания отличное за счет использования турбонагнетателя. Качество сгорания, примерно, выше в 2 раза, чем у бензинового двигателя.

В последние годы идет постоянное усовершенствование не только для улучшения эксплуатационных показателей, но и за счет современных требований мировых экологов. Сначала было требование двигатели Евро-2, потом 3, 4, 5.

Видео

В этом видео показывается принцип работы дизеля.

Строение системы дизельного двигателя.

Принцип работы турбонагнетателя (турбонаддува, турбины).

Отличия ДВС евро 5 от евро 4.

Устройство и принцип работы дизельного двигателя

Дизельный двигатель – двигатель внутреннего сгорания, изобретенный Рудольфом Дизелем в 1897 году. Устройство дизельного двигателя тех лет позволяло использовать в качестве топлива нефть, рапсовое масло, и твердые виды горючих веществ. Например, каменноугольную пыль.

Принцип работы дизельного двигателя современности не изменился. Однако моторы стали более технологичными и требовательными к качеству топлива. Сегодня в дизелях используется только высококачественное ДТ.

Моторы дизельного типа отличаются топливной экономичностью и хорошей тягой при низких оборотах коленвала, поэтому получили широкое распространение на грузовых автомобилях, кораблях и поездах.

С момента решения проблемы высоких скоростей (старые дизели при частом использовании на высоких скоростях быстро выходили из строя) рассматриваемые моторы стали часто устанавливаться на легковые авто. Дизели, предназначенные для скоростной езды, получили систему турбонаддува.

Принцип работы двигателя Дизеля

Принцип действия мотора дизельного типа отличается от бензиновых моторов. Здесь отсутствуют свечи зажигания, а топливо подается в цилиндры отдельно от воздуха.

Цикл работы такого силового агрегата можно представить в следующем виде:

  • в камеру сгорания дизеля подается порция воздуха;
  • поршень поднимается, сжимая воздух;
  • от сжатия воздух нагревается до температуры около 800˚C;
  • в цилиндр впрыскивается топливо;
  • ДТ воспламеняется, что приводит к опусканию поршня и выполнению рабочего хода;
  • продукты горения удаляются с помощью продувки через выпускные окна.

От того, как работает дизельный двигатель, зависит его экономичность. В исправном агрегате используется бедная смесь, что позволяет сэкономить количество топлива в баке.

От чего зависит компрессия

Как уже сказано, компрессия дизельного двигателя, и не только его, а всех силовых установок, зависит от состояния цилиндро-поршневой группы и газораспределительного механизма.

ПОПУЛЯРНОЕ У ЧИТАТЕЛЕЙ: Установка ГБО, особенности выполняемых работ

Но помимо этого компрессия двигателя еще и зависит от количества оборотов коленвала. Чем ниже его обороты, тем больше времени у воздуха, находящегося внутри цилиндра найти место, где он может выйти из нее.

Поэтому при замере компрессии важно проследить о том, чтобы стартер обеспечил хотя бы минимальных 200-250 оборотов коленчатого вала в минуту. Иначе показания компрессометра не будут соответствовать реальному значению этого показателя.

Это конечно, не все факторы, влияющие на компрессию, но перечисленные являются одними из основных.



Как устроен дизельный двигатель

Основным отличием конструкции дизеля от бензиновых моторов является наличие топливного насоса высокого давления, дизельных форсунок и отсутствие свечей зажигания.

Общее устройство этих двух разновидностей силового агрегата не различается. И в том, и в другом имеются коленчатый вал, шатуны, поршни. При этом у дизельного мотора все элементы усилены, так как нагрузки на них более высокие.

На заметку: некоторые движки дизельного типа имеют свечи накаливания, которые ошибочно принимаются автолюбителями за аналог свечей зажигания. На самом деле, это не так. Свечи накаливания используются для нагрева воздуха в цилиндрах в мороз.

При этом дизель легче заводится. Свечи зажигания в бензиновых моторах применяются для воспламенения топливовоздушной смеси в процессе работы двигателя.

Систему впрыска на дизелях делают прямой, когда топливо поступает непосредственно в камеру, или непрямой, когда воспламенение происходит в предкамере (вихревая камера, фор-камера). Это небольшая полость над камерой сгорания, с одним или несколькими отверстиями, через которые туда поступает воздух.

Такая система способствует лучшему смесеобразованию, равномерному нарастанию давления в цилиндрах. Зачастую именно в вихревых камерах применяются калильные свечи, призванные облегчить холодный пуск. При повороте замка зажигания, автоматически запускается процесс нагрева свечей.

Устройство топливной системы дизельного мотора

Топливная система отвечает за подачу строго определенного количества топлива с определенным давлением по определенному графику. Поэтому это достаточно сложный и дорогой узел дизельного двигателя. Топливная система включает следующие основные элементы:

  1. Топливный насос высокого давления. Подает топливо к форсункам в зависимости от действий водителя, режима работы мотора и инструкций управляющей программы. Современные топливные насосы представляют собой главный исполнительный механизм, который отрабатывает директивы шофера и управляет двигателем. На последних моделях легковых дизельных авто устанавливают топливные насосы распределительного типа, которые равномернее подают топливо, хорошо работают на высоких оборотах, имеют компактный размер.
  2. Форсунки. Совместно с топливным насосом подают дозированное количество топлива в камеру сгорания. Тип распылителя форсунки задает форму факела сгорания топлива, давление её открытия – рабочее давление топливной системы. В настоящее время используются форсунки с многодырчатым и шрифтовым распылителем. Распылители форсунок обычно изготавливают из жаропрочных материалов, поскольку они непосредственно контактируют с камерой сгорания.
  3. Топливный фильтр. Отделяет засоры и воду в топливной смеси. Насос ручной подкачки позволяет удалить воздух из топливной системы. Дополнительная установка электрического подогрева на топливном фильтре позволяет облегчить запуск мотора при низких температурах, избежать забивания фильтра парафином после кристаллизации дизельного топлива.



Плюсы и минусы дизельного мотора

Как и любой другой тип силового агрегата, дизельный мотор имеет положительные и отрицательные черты. К «плюсам» современного дизеля относят:

  • экономичность;
  • хорошую тягу в широком диапазоне оборотов;
  • больший, чем у бензинового аналога, ресурс;
  • меньшее количество вредных выбросов.

Дизель не лишен и недостатков:

  • моторы, не оснащенные свечами накаливания, плохо заводятся в мороз;
  • дизель дороже и сложнее в обслуживании;
  • высокие требования к качеству и своевременности обслуживания;
  • высокие требования к качеству расходных материалов;
  • большая, чем у бензиновых движков, шумность работы.

Дизельный двигатель с турбонаддувом

Принцип работы турбины на дизельном двигателе практически не отличается от такового на бензиновых моторах. Суть заключается в нагнетании в цилиндры дополнительного воздуха, что закономерно увеличивает количество поступающего топлива. За счет этого отмечается серьезный прирост мощности мотора.

Устройство турбины дизельного двигателя также не имеет существенных отличий от бензинового аналога. Устройство состоит из двух крыльчаток, жестко связанных между собой, и корпуса, внешне напоминающего улитку. На корпусе турбокомпрессоров имеется 2 входных и 2 выходных отверстия. Одна часть механизма встраивается в выпускной коллектор, вторая во впускной.

Схема работы проста: газы, выходящие из работающего мотора, раскручивают первую крыльчатку, которая вращает вторую. Вторая крыльчатка, вмонтированная во впускной коллектор, нагнетает атмосферный воздух в цилиндры. Увеличение подачи воздуха приводит к увеличению подачи топлива и росту мощности. Это позволяет мотору быстрее набирать скорость даже на низких оборотах.



Турбина и интеркуллер

Турбина позволяет повысить производительность ДВС. Топливо полностью перегорает в камере, в результате повышается мощность мотора. Турбокомпрессор обеспечивает большое поступление воздуха с самых низких оборотов. Благодаря тому, что дроссельная заслонка попросту отсутствует в этой конструкции, это позволяет полнее наполнить цилиндры.

  • Фейсбук
  • Гугл+
  • ЖЖ
  • Blogger

В двигателях с турбиной сжатый воздух сильно нагревается. Это не очень хорошо сказывается на турбонадуве – снижается эго эффективность, происходит потеря мощности. Интеркуллер – промежуточный охладитель воздуха, который охлаждает воздух, что способствует повышению его плотности и большей наполняемости цилиндров.

Благодаря слаженной работе турбины и интеркуллера мощность мотора возрастает на 15-20%.

  • Фейсбук
  • Гугл+
  • ЖЖ
  • Blogger



Турбояма

В процессе работы турбина может совершать до 200 тысяч оборотов в минуту. Раскрутить ее до необходимой скорости вращения моментально невозможно. Это приводит к появлению т.н. турбоямы, когда с момента нажатия на педаль газа до начала интенсивного разгона проходит некоторое время (1-2 секунды).

Проблема решается доработкой турбинного механизма и установкой нескольких крыльчаток разного размера. При этом маленькие крыльчатки раскручиваются моментально, после чего их догоняют элементы большого размера. Такой подход позволяет практически полностью ликвидировать турбояму.


Также производятся турбины с изменяемой геометрией, VNT (Variable Nozzle Turbine), призванные решать те же проблемы. В настоящий момент существует большое количество модификаций подобного типа турбин. Коррекция геометрии успешно справляется и с обратной ситуацией, когда оборотов и воздуха становится слишком много и необходимо притормозить обороты крыльчатки.

Volkswagen 1.6 TDI

Вне конкуренции по расходу топлива остаётся дизель TDI, разработанный инженерами компании Volkswagen. Он самый экономичный. При объёме в 1,6 литров конструкторам удалось заметно снизить аппетиты мотора, сохранив мощность, 90-120 л. с. в разных модификациях.

В моторе 1.6 TDI используются система впрыска Common Rail, инжекторы Bosh и турбонагнетатель с изменяемой геометрией. Благодаря увеличенному давлению в системе подачи топлива и усовершенствованной турбине удалось добиться расхода топлива всего в 4,5 л/100 км. И это при неторопливой езде по городу. На трассе этот мотор показывает гораздо лучший результат – 3,5 л/100 км по паспорту, а в действительности он может приближаться вплотную к 3 литрам.

Дизель 1.6 TDI использовался во многих автомобилях марок Volkswagen, Audi, Scoda. Его расчётный ресурс – 350 000 километров.

Интеркуллер

Было замечено, что если при смесеобразовании используется холодный воздух, КПД двигателя увеличивается до 20%. Это открытие привело к появлению интеркуллера – дополнительного элемента турбин, повышающего эффективность работы.

После всасывания воздуха он проходит через радиатор, и в охлажденном состоянии попадает во впускной коллектор. Мы уже публиковали статью, в которой можно подробно ознакомиться со схемой работы интеркуллера.


За турбиной современного автомобиля необходимо должным образом ухаживать. Механизм крайне чувствителен к качеству моторного масла и перегреву. Поэтому смазочный материал рекомендуется менять не реже, чем через 5-7 тысяч километров пробега.

Кроме того, после остановки машины следует оставлять ДВС включенным на 1-2 минуты. Это позволяет турбине остыть (при резком прекращении циркуляции масла она перегревается). К сожалению, даже при грамотной эксплуатации ресурс компрессора редко превышает 150 тысяч километров.

На заметку: оптимальным решением проблемы перегрева турбины на дизельных моторах является установка турботаймера. Устройство оставляет двигатель запущенным на протяжении необходимого времени после выключения зажигания. После окончания необходимого периода электроника сама выключает силовой агрегат.

Строение и принцип действия дизельного двигателя делают его незаменимым агрегатом на тяжелом транспорте, которому необходима хорошая тяга «на низах». Современные дизели с равным успехом работают и в легковых автомобилях, главное требование к которым: приемистость и время набора скорости.

Сложный уход за дизелем компенсируется долговечностью, экономичностью и надежностью в любых ситуациях.

Что еще стоит почитать


Система питания дизельного двигателя


Топливно воздушная смесь


Впускной коллектор с изменяемой геометрией


Принцип работы двигателя автомобиля


Принцип работы инжектора

Honda N22A, N22B, 5N22B1 (2.2 CTDi, 2.2 i-DTEC)

В 2003 году инженеры японской компании Honda разработали свой первый дизельный двигатель с системой впрыска топлива Common Rail. Новые дизельные двигатели серии N, особенно 2,2-литровый N22A, получились невероятно надёжными, и при своевременном техническом обслуживании их ресурс составляет около 600 000 километров. Двигатель 2.2 CTDi (N22A) производился до 2010 года, после чего ему на смену пришли не менее надёжные двигатели 2.2 i-DTEC (N22B, 5N22B1).

Встречаются на автомобилях: Honda Civic, Honda Accord, Honda FR-V, Honda CR-V.

Принцип работы дизеля

ДИЗЕЛЬНЫЙ ДВИГАТЕЛЬ — ПРИНЦИП РАБОТЫ

Конструкция дизельного двигателя подобна конструкции бензинового двигателя. Однако аналогичные детали у дизеля существенно усилены, чтобы воспринимать более высокие нагрузки — ведь степень сжатия у него намного выше (16-24 единиц против 9-11 у бензинового).

Характерная деталь в конструкции дизелей — это поршень.

Форма днища поршней у дизелей определяется типом камеры сгорания, поэтому по форме легко определить, какому двигателю принадлежит данный поршень.

Во многих случаях днище поршня содержит в себе камеру сгорания. Днища поршней находятся выше верхней плоскости блока цилиндров, когда поршень находится в верхней точке своего хода. Так как воспламенение рабочей смеси осуществляется от сжатия, в дизелях отсутствует система зажигания, хотя свечи могут применяться и на дизеле. Но это не свечи зажигания, а свечи накаливания, которые предназначены для подогрева воздуха в камере сгорания при холодном пуске двигателя.

ТУРБОДИЗЕЛЬ

Эффективным средством повышения мощности и гибкости работы дизеля является турбонаддув.

Он позволяет подать в цилиндры дополнительное количество воздуха и соответственно увеличить подачу топлива на рабочем цикле, в результате чего увеличивается мощность двигателя.

Отсутствие дроссельной заслонки в дизеле позволяет обеспечить эффективное наполнение цилиндров на всех оборотах без применения сложной схемы управления турбокомпрессором. На многих автомобилях устанавливается интеркулер, позволяющий поднять массовое наполнение цилиндров и на 15-20 % увеличить мощность.

Особенности конструкции

Дизельные двигатели, разумеется, не имеют таких колоссальных отличий как роторно-поршневой двигатель Ванкеля, устройство которого абсолютно не похоже на “анатомию” традиционного ДВС, но у него имеется ряд особенностей, которые проводят между ним и бензиновыми моторами черту.

У дизеля также есть кривошипно-шатунный механизм, но его степень сжатия существенно выше – 19-24 единицы против 9-11 единиц соответственно. Принципиальное отличие дизельного двигателя от бензинового заключается в том, как формируется, воспламеняется и сгорает топливно-воздушная смесь.

У дизельного ДВС отсутствуют свечи зажигания и, соответственно, воспламенение топливно-воздушной смеси происходит от сжатия. При этом, воздух и солярка подаются раздельно. Также следует отметить, что практически ни один современный дизель не обходится без системы наддува, которая используется для повышения рабочих характеристик агрегата. Для оптимизации наддува в максимально широком диапазоне оборотов используются турбонагнетатели с изменяемой геометрией. Дизельный агрегат имеет более высокий коэффициент полезного действия, но он тяжелее и выдает больший крутящий момент при низких оборотах, нежели бензиновый ДВС.

Принцип работы дизельного двигателя

Сперва воздух поступает в цилиндры. В конце такта сжатия, когда поршень почти достиг верхней мертвой точки, температура воздуха в камере сгорания достигает высоких значений (порядка 700-800 градусов) и затем в цилиндры впрыскивается дизельное топливо, которое воспламеняется самостоятельно, без искрового зажигания. Тем не менее, свечи в дизельном агрегате все-таки есть, но то – свечи накаливания, а не зажигания, которые нагревают камеру сгорания для облегчения запуска двигателя в холодное время.

Работа свечи накаливания в дизельном двигателе

Они представляет собой спираль (бывают с металлической и керамические), могут быть установлены в вихревой камере или в форкамере (если речь идет об агрегатах с раздельной камерой сгорания) или непосредственно в камере сгорания (если она нераздельная). При включении зажигания свечи накаливания практически мгновенно, за считанные секунды они раскаляются до температур в районе тысячи градусов и нагревают воздух в камере сгорания, облегчая процесс самовоспламенения топливно-воздушной смеси.

Устройство системы дизельного двигателя

Устройство дизельного двигателя

  • цилиндро-поршневая группа (цилиндры, поршни, шатуны);
  • топливные форсунки;
  • впускные и выпускные клапана;
  • турбина;
  • интеркулер.

Современный дизельный двигатель в разрезе

Конструкция

Принцип работы дизельного двигателя заключается в преобразовании возвратно-поступательных движений кривошипно-шатунного механизма в механическую работу.

Способ приготовления и воспламенения топливной смеси – это то, чем отличается дизельный двигатель от бензинового. В камерах сгорания бензиновых моторов, приготовленная заранее топливно-воздушная смесь воспламеняется с помощью подаваемой свечой зажигания искры.

Особенность дизельного двигателя заключается в том, что смесеобразование происходит непосредственно в камере сгорания. Рабочий такт осуществляется путем впрыскивания под огромным давлением дозированной порции топлива. В конце такта сжатия реакция нагретого воздуха с дизтопливом приводит к воспламенению рабочей смеси.

Двухтактный дизельный двигатель имеет более узкую сферу применения. Использование одноцилиндрового и многоцилиндрового дизелей такого типа имеет ряд конструктивных недостатков:

  • неэффективную продувку цилиндров;
  • повышенный расход масла при активном использовании;
  • залегание поршневых колец в условиях высокотемпературной эксплуатации и прочие.

Двухтактный дизельный двигатель с противоположным размещением поршневой группы имеет высокую первоначальную стоимость и очень сложен в обслуживании. Установка такого агрегата целесообразна лишь на морских судах. В таких условиях, благодаря небольшим габаритам, малой массе и большей мощности при идентичных оборотах и рабочем объеме, двухтактный дизельный двигатель более предпочтителен.

Одноцилиндровый агрегат внутреннего сгорания широко применяется в домашнем хозяйстве в качестве электрогенератора, двигателя для мотоблоков и самоходных шасси.

Такой тип получения энергии налагает определённые условия на устройство дизельного двигателя. Он не нуждается в бензонасосе, свечах, катушке зажигания, высоковольтных проводах и прочих узлах, жизненно необходимых для нормальной работы бензинового ДВС.

В нагнетании и подачи дизтоплива участвуют: топливный насос высокого давления и форсунки. Для облегчения холодного пуска современные моторы используют свечи накала, которые предварительно подогревают воздух в камере сгорания. Во многих автомобилях в баке устанавливается вспомогательный насос. Задача топливного насоса низкого давления в том, чтобы прокачать топливо от бака к топливной аппаратуре.

Особенности работы дизеля

Работа дизельного двигателя будет выглядеть так:

  1. во время движения поршня в нижнее положение осуществляется приток чистых воздушных масс в цилиндры;
  2. при движении поршня вверх происходит нагрев этого воздуха;
  3. в высочайшей точке создается большая степень сжатия, вследствие чего температура может доходить до 800-900 градусов Цельсия;
  4. при прохождении самой верхней точки осуществляется впрыск топлива в камеры под сильнейшим давлением. В итоге оно соприкасается с раскаленными воздушными массами и происходит воспламенение.
  5. под действием горения происходит рост давления в цилиндре, передающего момент, что и создает шум такого двигателя.

Благодаря указанной схеме дизельному мотору вполне достаточно небогатой смеси топлива. Стоимость подобного топлива невероятно низка, что объясняет его неприхотливость, а также экономичность. К тому же коэффициент полезного действия, а также крутящий момент выше, чем у мотора на бензине.

Но у дизеля есть и определенные минусы:

  1. вибрация и определенная шумность;
  2. определенные затруднения при холодном пуске;
  3. относительно невысокая мощность, но это вряд ли можно отнести к современным моделям.

Устройство дизеля

Дизельный мотор имеет степень сжатия практически в два раза больше бензинового. Поэтому это требует усиления его элементов, так как они требую больших нагрузок. Устройство дизельного двигателя предполагает отсутствие стандартной системы зажигания, так как используется принцип самовоспламенения от сжатия. При этом есть модели, где также применяются свечи. Они используются, чтобы прогревать воздух, что особенно важно зимой, когда пуск затруднителен.

Поршень дизельного двигателя имеет форму, которая зависит во многом от типа камеры сгорания. При этом его днище выступает за блоки цилиндров в момент нахождения в верхней точке. Поэтому экологичность и технические параметры зависят в большей степени от системы впрыска, а также типа камеры сгорания.

Устройство дизельного двигателя

Когда вы слышите слово “дизель”, какие сразу возникают ассоциации? Не ошибемся, если скажем, что у большинства – чадящий выхлопными газами КамАЗ, за рулем которого – водитель в телогрейке. А если на улице еще и мороз, то у мужика в руках обязательно паяльная лампа, которой он пытается отогреть бак грузовика. Образ, конечно, прочно засел в сознании. И чтобы он исчез, нужно время. Тем более с каждым днем на наших дорогах ездит все больше и больше красивых и модерновых дизельных авто. Но чтобы окончательно развеять миф, давайте посмотрим, как устроено дизельное “сердце” и какие особенности конструкции оно имеет.

Прежде немного о преимуществах дизельного “сердца”. Такой мотор более экономичен, он обладает высоким крутящим моментом, причем это относится ко всему диапазону оборотов. Это становится особенно актуальным при работе на низких оборотах. Кроме того, КПД такого двигателя больше, чем у бензинового агрегата. Все эти особенности дизеля прекрасно понимают производители автомобилей, зная, что такой силовой агрегат идеально подходит для внедорожного автомобиля, которое должно работать в непростых и тяжелых условиях. Неудивительно, что в линейке джипов, производимых любой компанией, обязательно есть и дизельные модификации. И это, как правило, не одна модель.

Фото принципа работы дизельного двигателя

Дизельные моторы в конце 90-х обрели второе дыхание. И это произошло за счет того, что они были значительно усовершенствованы. Например, в систему топливоподачи и управления мотора было внедрено электронное управление. Поэтому современные дизельные агрегаты вплотную подошли к своим собратьям, работающим на бензине. А по некоторым параметрам, например, надежности экономичности, они их даже превосходят.

Принцип работы дизельного агрегата

Может показаться, что конструктивно двигатели бензиновые и моторы дизельные неотличны. Мы видим одинаковые цилиндры, поршни шатуны. Но отличие все же есть. И это принципиальное отличие. Разница в том, как формируются топливо-воздушные смеси, как происходит их воспламенение, а затем сгорание. В бензиновом агрегате во впускной системе вначале формируется смесь. После этого она подается в цилиндр, где сразу возгорается от свечной искры. Работа дизеля отличается – воздух и топливо подаются независимо друг от друга, – т.е. отдельно. Сначала подается чистый воздух в цилиндр, и он сжимается. Во время сжатия происходит нагревание до 700-800 градусов по С.. Потом форсунки под давлением подают в камеру топливо, и оно сражу же воспламеняется.

Самовозгорание получается за счет давления в цилиндре, которое возрастает. Вот поэтому дизельный агрегат более шумный и жесткий при своей работе. Но в этом есть и свой плюс – можно применять более дешевое, по сравнению с бензином, топливо, и это дает экономию. Тем более сегодня в современных дизельных авто проблемы с лишним шумом, как и трудности во время холодного пуска, почти устранены.

Виды дизельных двигателей

Силовые агрегаты дизельного типа разделяются по видам. Главное различие – особенности констукций камер сгорания. Существуют моторы с неразделенной камерой сгорания. Их еще называют агрегатами с непосредственным впрыском. В них топливо подается в пространство над поршнем; в поршне же расположена камера сгорания. Сегодня такие двигатели значительно модернизированы за счет появления топливных насосов высокого давления, а также за счет того, что появился впрыск топлива с двумя ступенями, и электронное управления всеми процессами, – например, оптимизацией сгорания топлива. Теперь усовершенствованные моторы с непосредственным впрыском стали более уверенно работать при 4500 оборотах в минуту, уменьшился их шум, возросла экономичность, они стали меньше вибрировать.

Второй тип дизельный моторов – т.н. вихрекамерные. Чаще всего встречаются на легковушках. В чем главная особенность таких дизелей? Они имеют разделенную камеру сгорания. Т.е. топливо подается иначе – в дополнительную камеру, а не прямо в цилиндр. Чаще всего такая камера находится в головке блока цилиндров. Оказавшись в камере, воздух закручивается интенсивнее – отсюда и название – “вихревая”. Это приводит к тому, что дизтопливо лучше самовозгорается. Цилиндр и камера соединяются каналом.

И, наконец, третий тип моторов – предкамерные дизеля. Они наименее распространены, и их главное отличие – специальная форкамера, которая соединена с каждым из цилиндров через несколько небольших каналов. Эта конструкция мотора дает более высокий ресурс, токсичность и шум двигателя снижаются.

Топливный насос высокого давления

Мы с вами выяснили, что топливная система дизельного двигателя – главное отличие его конструкции. От топливоподачи зависит и надежность работы, и экономическая эффективность. Задача системы – подавать строго дозированное топливо. Причем это нужно делать в заданное время с заранее определенным давлением. Именно поэтому система топливоподачи в дизеле – дорогая система. Состоит из трех важных компонентов: топливного насоса высокого давления (ТНВД), топливного фильтра и форсунок.

Начнем с ТНВД. В таком насосе совмещены функции автоматического управления двигателем и основного исполнительного механизма, который реагирует на команду шофера. Нажимая на педаль газа, водитель не увеличивает топливоподачу, изменяя только работу регуляторов. Вот они-то и изменят топливную подачу так, как необходимо: в соответствии с оборотами двигателя, давлением воздуха и положением регулирующего рычага. Современные ТНВД, которые сегодня ставят на внедорожники, обычно бывают двух категорий: распределительные и рядные многоплунжерные. Последние редко используются, хотя конструктивно более надежны.

Устройство форсунки дизельного двигателя

Форсунка дизельного двигателя – немаловажный элемент в дизеле – в его топливной системе. Работая в “паре” с насосом, именно форсунка подает дозированные порции топлива в камеру сгорания. При открытии форсунки можно регулировать давление, и тогда в системе будет изменяться рабочее давление. Немаловажен тип распылителя – от него будет зависитеть принимаемая факелом топлива форма. Что влияет на воспламенение и последующее сгорание. Как правило, форсунки бывают двух видов – с многодырчатым распределителем, а также с шрифтовым.

Форсунка дизельного агрегата работает в непростых условиях – распыляющая игла в два раза меньше должна возвратно-поступательные движения по сравнению с оборотами двигателя, при этом распылитель имеет прямой контакт с камерой сгорания. Именно поэтому форсуночный распылитель производят из особо термоустойчивых материалов, а к их производству предъявляются особые требования, – например, повышенную точность.

Фильтр дизельного двигателя

Этот элемент довольно прост, тем не менее, фильтр – самый главный элемент в дизельном моторе. Причем для каждого конкретного типа двигателя он должен подходить и по параметрам, и по характеристикам: по пропускной способности, по тонкости фильтрации. Одна из задач фильтра – отделять и удалять воду. Для этого существует нижняя сливная пробка. Зачастую вверху фильтра, прямо на корпусе, ставится насос для подкачки вручную, которым можно из системы откачать ненужный воздух. Реже на фильтр ставится электроподогрев, который упрощает запуск дизельного мотора. Его задача – предотвратить попадание в фильтр парафинов, образующихся при минусовых температурах от кристаллизации дизтоплива.

Турбонаддув дизельного мотора

С помощью турбонаддува можно значительно повысить мощность и эффективность дизельного мотора. За счет этой опции в цилиндры нагнетается больше воздуха, поэтому в рабочем цикле возрастает топливоподача. Как следствие возрастает и мощность дизеля. В дизельном моторе выхлопные газы выходят с давлением в 1,5-2 раза большим, чем в бензиновом.

Благодаря этому турбина может прямо с низких оборотов нагнетать в цилиндр больше воздуха, избежав т.н. “турбоям”, которые характерны для бензиновых турбодвигателей. Еще один плюс – в дизельном агрегате нет дроссельной заслонки, и это дает возможность максимально наполнить воздухом цилиндры без того, чтобы использовать сложную систему, которая управляет турбиной. Нередко на двигатели ставят интеркуллер – систему, которая охлаждает наддуваемый воздух на промежуточном этапе. В итоге цилиндры наполняются воздухом еще больше, и мощность возрастает дополнительно на 15-20%.

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: