Мини-двигатель как перспективный вариант развития ДВС + видео

Мини-двигатель как перспективный вариант развития ДВС + видео » АвтоНоватор

Ремонт двигателя значительно дешевле, чем покупка нового, и доступен для любых современных моторов. Технологии, цены, фото.

  1. Принцип действия ДВС
  2. Типы моторов
  3. Шаг 1: Присоедините двигатель постоянного тока к маховику коробки передач
  4. Как изготовить дома работающий двигатель Стирлинга?
  5. Насколько эффективен самый маленький двигатель внутреннего сгорания?
  6. Устройство и принцип работы
  7. Шаг 4: Вентилятор
  8. С чего начать?
  9. Шаг 5: Корпус
  10. Как сделать двигатель своими руками?
  11. Емкость для воды
  12. Шаг 6: Механизм стартера
  13. Финальная стадия

Принцип действия ДВС

На сегодняшний день существуют разные виды двигателей, нодля моделизма чаще всего используются:

  • Поршневые двигатели дизельного типа.
  • Двигатели, зажигаемые путём накала или искры.

Дизельные двигатели отличаются от искровых или калильныхтем, что в первых возгорание горючего происходит при сильном сжатии газа впроцессе движения поршня в цилиндре. А последние два типа двигателей требуютдля возгорания уже сжатой смеси дополнительной энергии, для чего необходимозаранее нагреть калильную свечу или произвести искровой разряд.

Поршневые двигатели могут быть только двухтактными. Двигатели,которые зажигаются путём накала или искры, бывают и двухтактные, ичетырехтактные.

Двухтактные двигатели осуществляют любой рабочий процессв два такта, выполняемые за 1 оборот коленвала.

В первом такте осуществляется «всасывание-сжатие»: когдаколенчатый вал вращается, поршень перемещается снизу вверх. В процессе егодвижения топливная смесь всасывается через золотник в картер, и в то же время вцилиндре сжимается предыдущая порция горючего.

Перед тем как завершается первый такт, в цилиндревоспламеняется горючая смесь, в результате чего значительно увеличиваетсядавление в камере сгорания, которое способствует движению поршня вверх и вниз.

Во втором такте — «рабочем ходе-продувке» сгорающеетопливо расширяется, что способствует развитию механической мощности, а свежаяпорция топлива, засосанная в цилиндр во время первого такта, сжимается.

После того, как поршень проходит около половины путивниз, газы, образованные во время сгорания топлива, выталкиваются из цилиндрачерез специально открывающееся окно. А после того, как открывается перепускноеокно, сжатое в картере горючее поступает в цилиндр, и тем самым вытесняет изнего оставшиеся отработанные газы, то есть, происходит продувка.

Типы моторов

Самодельный двигатель может иметь несколько конфигураций. Среди них:

  • Варианты с магнитом постоянного действия.
  • Комбинированная синхронная модель.
  • Переменный двигатель.

Привод с постоянным магнитом оборудуется основным элементом в роторной части. Функционирование таких приборов основано на принципе притяжения или отталкивания между статором и ротором приспособления. Такой шаговый электродвигатель оснащен роторной частью из железа. Принцип его работы заключается на фундаментальной основе, согласно которой, предельно допустимое отталкивание производится с минимальным зазором. Это способствует притяжению точек ротора к полюсам статора. Комбинированные устройства сочетают в себе оба параметра.

Еще один вариант – это двухфазные моторы шагового типа. Прибор представляет собой простую конструкцию, может иметь два типа обмотки, легко устанавливается в необходимом месте.

Шаг 1: Присоедините двигатель постоянного тока к маховику коробки передач

Основа модели моего реактивного двигателя очень проста. Присоедините двигатель постоянного тока к коробке передач. Идея заключается в том, что мотор приводит в движение ту часть коробки передач, которая была прикреплена к колесам игрушечной машинки. Поместите пластиковый рычаг, чтобы он ударялся о маленькую шестерню маховика, и она издавала шум. Некоторые коробки передач уже оснащены этим устройством, а некоторые нет.

Как изготовить дома работающий двигатель Стирлинга?

Дмитрий Петраков по многочисленным просьбам отснял пошаговую инструкцию по сборке мощного, относительно своих габаритов и потребляемого количества тепла двигателя Стирлинга. В этой модели задействованы доступные каждому зрителю и распространённые материалы – обзавестись ими способен любой желающий. Все размеры, представленные в этом ролике, автор подбирал на основе многолетнего опыта работы со Стирлингами такой конструкции, и для данного, конкретного экземпляра они являются оптимальными.

В этой модели задействованы доступные каждому зрителю и распространённые материалы, благодаря чему обзавестись ими способен любой желающий. Все размеры, представленные в этом ролике, подбирал на основе многолетнего опыта работы со Стирлингами такой конструкции, и для данного, конкретного экземпляра они являются оптимальными.

C чувством, толком и расстановкой.

Мотор Стирлинга в работе с нагрузкой (водяная помпа).

Водяная помпа, собранная в качестве рабочего прототипа, предназначена для работы в паре с моторами Стирлинга. Особенность насоса заключается в небольших затратах энергии, требуемых для совершения им работы: такая конструкция задействует лишь небольшую часть динамического внутреннего рабочего объёма двигателя, и тем самым по минимуму влияет на его производительность.

Насколько эффективен самый маленький двигатель внутреннего сгорания?

Обычный ДВС, действие которого основано на возвратно-поступательном движении поршня, теряет производительность по мере уменьшения рабочего объема. Все дело в значительной потере КПД при преобразовании этого самого движения ЦПГ во вращательное, столь необходимое для колес. Однако еще до Второй Мировой Войны механик-самоучка Феликс Генрих Ванкель создал первый действующий образец роторно-поршневого ДВС, в котором все узлы только вращаются. Логично, что данная конструкция, очень напоминающая электромотор, позволяет сократить количество деталей на 40 %, по сравнению со стандартными двигателями.

Несмотря на то, что до сегодняшнего дня не решены все проблемы данного механизма, срок службы, экономичность и экологичность соответствуют установленным мировым стандартам. Производительность же превосходит все мыслимые пределы. Роторно-поршневой ДВС с рабочим объемом 1.3 литра позволяет развить мощность в 220 лошадиных сил

. Установка же турбокомпрессора увеличивает этот показатель до 350 л.с., что очень даже существенно. Ну, а самый маленький двигатель внутреннего сгорания из серии «ванкелей», известный под маркой

OSMG 1400 , имеет объем всего 0.005 литра, однако при этом выдает мощность в 1.27 л.с. при собственном весе 335 граммов.

Основное преимущество роторно-поршневых двигателей – отсутствие шумов, сопровождающих работу механизмов, благодаря низкой массе работающих узлов и точному балансу вала.

Устройство и принцип работы

При передаче напряжения клеммам щетки двигателя приводятся в непрерывное вращение. Установка на холостом ходу уникальна, поскольку преобразовывает входящие импульсы в заранее определенную позицию имеющегося ведущего вала.

Любой импульсный сигнал воздействует на вал под конкретным углом. Такой редуктор максимально эффективен, если ряд магнитных зубцов размещен вокруг центрального зубчатого железного стержня или его аналога. Электрические магниты активируются от наружной контрольной цепи, состоящей из микрорегулятора. Для начала поворота вала двигателя один активный электромагнит притягивает к своей поверхности зубчики колеса. При их выравнивании по отношению к ведущему элементу они немного перемещаются к очередной магнитной детали.

Читайте также:
Перепрессовка коленвала – устройство, схема, порядок работ + видео

В шаговом электродвигателе первый магнит должен включаться, а следующий элемент – деактивироваться. В результате шестерня начнет вращение, постепенно выравниваясь с предыдущим колесиком. Процесс повторяется поочередно требуемое число раз. Такие обороты и получили название «постоянный шаг». Скорость вращения мотора можно определить путем подсчета количества шагов для полного оборота агрегата.

Шаг 4: Вентилятор

Вентилятор вы можете сделать так, как захотите. Я вырезал каждое лезвие из тонкого металлического листа и склеил их. Вы можете сделать их из картона и затем покрасить. Или, если у вас есть доступ к 3D принтеру, вы можете напечатать 3d-вентилятор. На www.thingiverse.com есть отличные трёхмерные модели вентиляторов.

С чего начать?

Конечно же, с информации. Достаем руководство, в котором подробно и со схемами сообщается, как ремонтировать именно вашу марку автомобиля. Находим в Интернете каталог, в котором есть запасные части на это авто, чтобы сразу определиться с ценами и, возможно, сделать заказ в интернет-магазине.

  • ключи — храповичный, динамометрический;
  • оправки для сцепления поршней, колпачков;
  • рассухариватель к клапанам;
  • микрометр;
  • головки;
  • приспособление для регулировки клапанов;
  • двухлапый или трехлапый съемник;
  • стетоскоп;
  • пинцет;
  • опорная стойка;
  • гидравлическая цепная таль;
  • комплект съемников.

Шаг 5: Корпус

Вы можете сделать корпус из картона, а затем, чтобы придать форму, добавить внешний заполнитель. Вам придется много шлифовать, так что это тяжелая и грязная работа. Когда вы всё сгладите, закрасьте корпус глянцевой белой краской.

Внутренняя часть двигателя должна быть окрашена в черный цвет. Передняя часть двигателя обычно имеет серебристый край, который вы, по желанию, можете нарисовать.

Как сделать двигатель своими руками?

Для создания элементарного мотора потребуется кусок магнита, сверло, фторопласт, проволока из меди, микрочип, провод. Вместо магнита можно использовать ненужный виброзвонок сотового телефона.

В качестве детали вращения используется сверло, поскольку инструмент оптимально подходит по техническим параметрам. Если внутренний радиус магнита не соответствует аналогичному аспекту вала, можно использовать медную проволоку, намотав ее таким образом, чтобы убрать люфт вала. Такая операция дает возможность увеличить диаметр вала в точке соединения с ротором.

В дальнейшем создании самодельного двигателя потребуется сделать втулки из фторопласта. Для этого возьмите подготовленный лист и проделайте отверстие диаметром 3 мм. Затем сконструируйте трубку-втулку. Вал необходимо отшлифовать до диаметра, обеспечивающего свободное перемещение. Это позволит избежать излишнего трения.

Емкость для воды

Теперь необходимо взять еще одну банку из-под краски, но уже меньшего размера. В центре ее крышки сверлят отверстие диаметром в 1 см. Сбоку банки проделывают еще два отверстия — одно почти у дна, второе — выше, у самой крышки.

Берут два корка, в центре которых проделывают отверстие с диаметров медной трубки. В один корок вставляют 25 см пластиковой трубы, в другой — 10 см, так, чтобы их край едва выглядывал из пробок. В нижнее отверстие малой банки вставляют корок с длинной трубкой, в верхнее — более короткую трубку. Меньшую банку размещаем на большой банке краски так, чтобы отверстие на дне было на противоположной стороне от вентиляционных проходов большой банки.

Шаг 6: Механизм стартера

Стартер и ручки подачи топлива связаны механически. Стартер имеет выключатель, который подключает двигатель к источнику питания. Этот переключатель также может быть активирован рычагом управления подачей топлива, когда он находится в рабочем положении.

Пружина стартера должна быть нагружена таким образом, чтобы она хотела вернуться в нормальное положение, и блокировала стартовое положение только в том случае, если рычаг управления подачей топлива находится в отключенном положении.

Идея состоит в том, чтобы стартер оставался в исходном положении, пока вы не переместите рычаг подачи топлива в рабочее положение, и теперь рычаг управления подачей топлива будет держать переключатель включенным. Также топливный рычаг является частью основания реостата. Реостат должен быть установлен таким образом, чтобы можно было вращать не только часть ручки, которая должна вращаться, но и всю основу реостата. Эта база — то, что контроль топлива двигает для увеличения скорости, когда он находится в рабочем положении. Это сложно объяснить и поэтому, чтобы лучше понять концепцию, вы должны посмотреть третью часть видео.

Финальная стадия

Далее производится намотка катушек. Каркас требуемого размера зажимается в тисах. Чтобы намотать 60 витков, понадобится 0,9 метра провода. После проведения процедуры катушка обрабатывается клеевым составом. Лучше всего эту деликатную процедуру проводить с микроскопом или увеличительным стеклом. После каждой двойной обмотки каплю клея внедряют между втулкой и проволокой. Один край каждой обмотки спаивается между собой, что даст возможность получить единый узел с парой выходов, которые паяются к микрочипу.

Мини-двигатель внутреннего сгорания – так ли он функционален?

Поскольку нефтепродукты постоянно растут в цене (ведь нефти свойственно заканчиваться), стремление к экономии на горючем вполне понятно, и мини-двигатель мог бы стать неплохим решением.

Насколько экономичен мини-двигатель внутреннего сгорания?

Как известно, ДВС делятся на бензиновые и дизельные, причем как первые, так и вторые сегодня претерпевают значительные изменения. Причиной модернизации, как самих механизмов, так и топлива, является значительно ухудшившаяся экология, на состояние которой влияют и выхлопы техники, работающей на жидком горючем. Так, к примеру, появился эко-бензин, разведенный спиртом в пропорции от 8:2 до 2:8, то есть спирта в таком топливе может содержаться от 20 до 80 процентов. Но на этом модернизация и закончилась. Тенденция уменьшения бензиновых двигателей в объеме практически не наблюдается. Самые маленькие образцы устанавливаются в авиамодели, более крупные используются на газонокосилках, лодочных моторах, снегоходах, скутерах и другой подобного рода технике.

Что же касается дизельных ДВС, сегодня действительно сделано немало для того, чтобы этот двигатель стал по-настоящему микроскопическим. В настоящее время концерном Toyota созданы самые маленькие микролитражки Corolla II, Corsa и Tercel, в них установлены дизельные двигатели 1N и 1NT объемом всего 1.5 литра. Одна беда – срок службы таких механизмов чрезвычайно низкий, и причина тому – очень быстрая выработка ресурса цилиндро-поршневой группы. Существуют и совсем крошечные дизельные ДВС, объемом всего 0.21 литра. Их устанавливают на компактную мототехнику и строительные механизмы, но мощности большой ожидать не приходится, максимум, что они выдают – 3.25 л.с. Впрочем, и расход топлива у таких моделей небольшой, о чем говорит объем топливного бака – 2.5 литра.

Читайте также:
Как проверить аккумулятора автомобиля на работоспособность: заряд АКБ мультиметром (тестером) и нагрузочной вилкой, уровень и плотность


Насколько эффективен самый маленький двигатель внутреннего сгорания?

Обычный ДВС, действие которого основано на возвратно-поступательном движении поршня, теряет производительность по мере уменьшения рабочего объема. Все дело в значительной потере КПД при преобразовании этого самого движения ЦПГ во вращательное, столь необходимое для колес. Однако еще до Второй Мировой Войны механик-самоучка Феликс Генрих Ванкель создал первый действующий образец роторно-поршневого ДВС, в котором все узлы только вращаются. Логично, что данная конструкция, очень напоминающая электромотор, позволяет сократить количество деталей на 40 %, по сравнению со стандартными двигателями.

Несмотря на то, что до сегодняшнего дня не решены все проблемы данного механизма, срок службы, экономичность и экологичность соответствуют установленным мировым стандартам. Производительность же превосходит все мыслимые пределы. Роторно-поршневой ДВС с рабочим объемом 1.3 литра позволяет развить мощность в 220 лошадиных сил. Установка же турбокомпрессора увеличивает этот показатель до 350 л.с., что очень даже существенно. Ну, а самый маленький двигатель внутреннего сгорания из серии «ванкелей», известный под маркой OSMG 1400, имеет объем всего 0.005 литра, однако при этом выдает мощность в 1.27 л.с. при собственном весе 335 граммов.

Основное преимущество роторно-поршневых двигателей – отсутствие шумов, сопровождающих работу механизмов, благодаря низкой массе работающих узлов и точному балансу вала.

Самый маленький дизельный двигатель как источник энергии

Если говорить о полноценном цилиндро-поршневом механизме, то на сегодняшний день самые небольшие размеры имеет детище инженера Йесуса Уайлдера. Это 12-цилиндровый двигатель V-образного типа, полностью соответствующий ДВС Ferrari и Lamborghini. Однако на деле механизм является бесполезной безделушкой, поскольку работает не на жидком топливе, а на сжатом воздухе, и при рабочем объеме в 12 кубических сантиметров имеет очень низкий КПД.

Другое дело – самый маленький дизельный двигатель, разработанный учеными Великобритании. Правда, в качестве горючего для него требуется не солярка, а особая самовозгорающаяся при увеличении давления смесь метанола с водородом. При тактовом движении поршня в камере сгорания, объем которой не превышает одного кубического миллиметра, возникает вспышка, приводящая механизм в действие. Что любопытно, микроскопических размеров удалось добиться путем установки плоских деталей, в частности, те же поршни являются ультратонкими пластинами. Уже сегодня в ДВС с габаритами 5х15х3 миллиметра крошечный вал вращается со скоростью 50.000 об/мин, вследствие чего производит мощность порядка 11,2 Ватта.

Пока перед учеными стоит ряд проблем, которые необходимо решить перед тем, как выпускать дизельные мини-двигатели на поточное производство. В частности, это колоссальные теплопотери из-за чрезвычайно тонких стенок камеры сгорания и недолговечность материалов при воздействии высоких температур. Однако, когда все-таки крошечные ДВС сойдут с конвейера, всего нескольких граммов топлива хватит, чтобы заставить механизм при КПД в 10 % работать в 20 раз дольше и эффективнее аккумуляторов таких же размеров.

Компактный дизельный двигатель: зачем нужен субкомпактный поршневой мотор

В нашей предыдущей статье мы уже рассказывали о самом большом двигателе внутреннего сгорания. При этом ни для кого не секрет, что постоянный рост цен на нефтепродукты и сложная экологическая ситуация являются основными факторами, которые сильно влияют на ДВС. Указанное влияние фактически сводится к одному – максимальное снижение расхода топлива и эффективная очистка отработавших газов.

При этом важно понимать, что наиболее качественно снизить потребление горючего удается за счет уменьшения рабочего объема двигателя. Однако такое уменьшение закономерно приводит к тому, что двигатель становится менее мощным и надежным, теряется приемлемая динамика разгона ТС и т.д.

Если говорить о бензиновых двигателя, изготовление слишком маленьких агрегатов по рабочему объему для авто и широкого списка другой техники в наши дни попросту нецелесообразно по целому ряду причин. При этом маленькие дизельные двигатели вполне имеют право на жизнь и активно разрабатываются. Давайте остановимся на этом более подробно.

Самые маленькие дизельные моторы, бензиновые и роторно-поршневые ДВС

Как уже было сказано выше, решение задачи по снижению токсичности выхлопа и общего количества вредных выбросов в атмосферу потребовало всесторонних изменений. Определенные доработки затронули как сами ДВС, так и топливо для них.

Бензиновые моторы стали использовать горючее, в котором допускается наличие большого количества спирта (в отдельных случаях до 75-80%), в дизельные ДВС заливается биодизель.

  • Что же касается миниатюрных версий, самые маленькие бензиновые двигатели сегодня используются в авиамоделировании (ставятся на авиамодели), а также на маленьких моделях радиоуправляемых машин, судов и т.п.

Если просто, необходимый КПД в процессе преобразования возвратно-поступательного движения во вращательное значительно понижается в агрегатах на бензине, чего становится недостаточно для прокручивания колес автомобиля или выполнения другой полезной работы.

Вернемся к микромоторам. Еще отметим, что некоторые ошибочно считают известные микродвигатели инженера Йесуса Уайлдера V12 и V16 наглядным образцом самого маленького бензинового двигателя. Однако на практике такой мотор скорее игрушка, чем практичный ДВС. Дело в том, что агрегат работает не на жидком топливе. В действие двигатель приводит сжатый воздух, а КПД находится на весьма низкой отметке.

  • Если же говорить о дизелях, этот тип двигателя имеет сегодня все шансы стать не просто маленьким, а фактически микроскопическим. Начнем с того, что сегодня часто встречаются маленькие дизельные двигатели, которые имеют рабочий объем чуть больше 0.2 л. и выдают, в среднем, 3.2 л.с.

Такие субкомпактнтые дизели прижились на небольшой мототехнике, а также приводят в действие различные механизмы. Вместительность топливного бака для такого мотора обычно составляет около 2.5 л. солярки.

Примечательно то, что рабочий объем цилиндра составляет всего лишь 1 миллиметр кубический. Таких малых размеров удалось добиться посредством изготовления ультратонких плоских элементов. Поршни больше напоминают прочные тонкие пластинки, а общие габариты ДВС составляют 5*15*3 мм. Для сравнения, такой двигатель можно разместить на ногте большого пальца человеческой руки. При этом коленвал раскручивается до 50 тыс. об/мин, а мощность установки составляет чуть более 11 Ватт.

  • Еще добавим, что отдельного внимания заслуживает и роторно-поршневой двигатель Ванкеля (роторный двигатель). Особенностью такого мотора является то, что в нем нет привычных поршней, цилиндров, элементов КШМ и т.д.
Читайте также:
Замена и проверка сальника распредвала

Детали внутри него совершают только вращательное движение, а сам агрегат больше похож на электродвигатель. В роторном агрегате почти в половину меньше деталей по сравнению с дизельным или бензиновым поршневым ДВС, то есть данная силовая установка компактнее по размеру и легче по весу.

Однако и это не главное. Такой тип двигателя имеет очень высокий КПД. Например, роторно-поршневой мотор, объем которого составляет всего 1.3 литра, при этом выдает целых 220 л.с. Если же оснастить этот агрегат турбонаддувом, тогда мощность можно поднять до 350 л.с. Главный недостаток — высокий расход горючего.

Что касается субкомпактных версий, самый маленький роторный двигатель весит всего 335 г. и является мотором с индексом OSMG 1400. Его рабочий объем составляет 0.005 литра, при этом мощность почти 1.3 л.с.

Что в итоге

Как видно, если учесть значительную потерю КПД при уменьшении объема бензинового двигателя, а также специфические особенности в виде повышенного расхода топлива и сниженной надежности роторно-поршневого мотора, компактный дизельный двигатель является наиболее перспективным вариантом во всех отношениях.

При этом такие агрегаты будут потреблять уже не литры, а граммы топлива, показатель КПД вполне может оказаться на отметке около 7-10%. Это значит, что такой двигатель в качестве источника энергии окажется более эффективным и намного более долговечным решением по сравнению с различными аккумуляторными батареями, которые могут быть схожи по габаритам.

Дизельный оппозитный двигатель Субару (Subaru Boxer Diesel). Устройство и особенности оппозитного мотора, преимущества и недостатки указанного типа ДВС.

Какой срок службы двигателя является нормой для современных моторов. Почему не осталось двигателей “миллионников”. Как увеличить ресурс современного ДВС.

Основные отличия, а также преимущества и недостатки 8-и клапанных моторов по сравнению с 16-и клапанными двигателями. Какой силовой агрегат лучше выбрать.

Особенности и отличия оппозитного двигателя от других поршневых ДВС. Преимущества оппозитного мотора, минусы данной конструкции, нюансы обслуживания.

Назначение и функции форкамеры в устройстве предкамерных бензиновых и дизельных двигателей. Внедрение предкамеры для повышения мощности и экономии топлива.

Виды двигателей внутреннего сгорания, отличия различных типов ДВС. Особенности компоновки, объем двигателя, мощность, крутящий момент и другие параметры.

ТОП автомобилей с самыми малыми двигателями на бензине

Как сделать простейший двигатель внутреннего сгорания своими руками?

В древние времена люди использовали животных для приведения в действие простейших механизмов. Позже для плавания на парусных суднах и для того чтобы заставить вращаться ветряные мельницы, делающие из зерна муку, стала использоваться сила ветра. Затем люди научились использовать силу течения речной воды для того, чтобы заставить вращаться водяные колёса, перекачивающие и поднимающие воду или приводящие в действие разнообразные механизмы.
Тепловые двигатели появились в далёком прошлом, в том числе и двигатель Стирлинга. Сегодня технологии значительно усложнились. Так, например, человечество изобрело двигатель внутреннего сгорания, который является довольно сложным механизмом. На основе ДВС в настоящее время работает большинство современных автомобилей и другой необходимой для человека техники. Функция, которую выполняет тепловое расширение внутри двигателя внутреннего сгорания, очень сложна, но без неё работа ДВС невозможна.

В механическом устройстве, называемом двигателем внутреннего сгорания, энергия сгорающего топлива преобразуется в механическую. Для того чтобы сделать двигатель внутреннего сгорания своими руками, необходимо знать основные принципы его действия.

Принцип действия ДВС

На сегодняшний день существуют разные виды двигателей, но для моделизма чаще всего используются:

  • Поршневые двигатели дизельного типа.
  • Двигатели, зажигаемые путём накала или искры.

Дизельные двигатели отличаются от искровых или калильных тем, что в первых возгорание горючего происходит при сильном сжатии газа в процессе движения поршня в цилиндре. А последние два типа двигателей требуют для возгорания уже сжатой смеси дополнительной энергии, для чего необходимо заранее нагреть калильную свечу или произвести искровой разряд.

Поршневые двигатели могут быть только двухтактными. Двигатели, которые зажигаются путём накала или искры, бывают и двухтактные, и четырехтактные.

Двухтактные двигатели осуществляют любой рабочий процесс в два такта, выполняемые за 1 оборот коленвала.

В первом такте осуществляется «всасывание-сжатие»: когда коленчатый вал вращается, поршень перемещается снизу вверх. В процессе его движения топливная смесь всасывается через золотник в картер, и в то же время в цилиндре сжимается предыдущая порция горючего.

Перед тем как завершается первый такт, в цилиндре воспламеняется горючая смесь, в результате чего значительно увеличивается давление в камере сгорания, которое способствует движению поршня вверх и вниз.

Во втором такте — «рабочем ходе-продувке» сгорающее топливо расширяется, что способствует развитию механической мощности, а свежая порция топлива, засосанная в цилиндр во время первого такта, сжимается.

После того, как поршень проходит около половины пути вниз, газы, образованные во время сгорания топлива, выталкиваются из цилиндра через специально открывающееся окно. А после того, как открывается перепускное окно, сжатое в картере горючее поступает в цилиндр, и тем самым вытесняет из него оставшиеся отработанные газы, то есть, происходит продувка.


Для аварийного привода воздушных компрессоров и пожар­ных насосов большой производительности часто используются дизели небольшой мощности (табл. 3.11). Отечественные дизели типов 4 8,5/11 (табл. 3.12) и Ч 9,5/10 применяются в автоматизи­рованных многотопливных дизель-генератор многоцелевого назначения мощностью 8, 16 и 30 кВт.

Эти дизель-генераторы работоспособны в зонах большой влажности при температуре от —50 до +50 °С. Эти дизели могут работать на автомобильном бензине, дизельном топливе, трактор­ном керосине и их смесях в любых пропорциях. Часто на морских судах их применяют в качестве аварийного дизель-генератора.

Дизели 1Р1-С (14 8,5/11) предназначены для привода электро­генераторов постоянного или переменного тока, а также насо­сов, компрессоров и других механизмов различного назначения соответствующей мощности. Они оборудованы радиаторной си­стемой охлаждения, муфтой для соединения с приводным механизмом и приборами для контроля за работой дизель-генератор. Дизели запускаются вручную. Топливный бак имеет объем топлива 20 л.

Читайте также:
Как сделать подвеску мягче?

Дизели ЗР2-С кроме ручного запуска с применением деком­прессии и свечей накаливания имеют электростартер и аккумуля­тор. Работа этих дизелей полностью автоматизирована (при обесточивании ГРЩ автоматически запускается аварийный дизель-генератор), предваритель­ного предпускового прогрева не требуется. Для резервного воз­душного пуска аварийного дизель-генератор установлен ручной компрессор с воздушным баллоном пускового воздуха давлением не более 3 МПа.

Дизель 2Р4-С—четырехтактный с радиаторной системой охлаж­дения, имеет раму и муфту для соединения с приводным меха­низмом. На раме имеются приборы для контроля за работой ди­зеля. Пуск дизеля осуществляется электростартером. Объем топливного бака дизеля 50 л.

Дизели ЗДШ-6 предназначен для привода различных машин и механизмов соответствующей мощности посредством плоскоременной передачи. Это одноцилиндровые дизели с радиаторной системой охлаждения.

Дизель-электрический агрегат 4Э-4 состоит из дизеля 14 8,5/11, соединенного упругой муфтой с генератором ЕС-52-4С, и радиатора, смонтированных на общей сварной раме. Агрегат снабжен автоматическими регуляторами напряжения и частоты вращения. Топливный бак имеет емкость 20 л.

Дизель-электрический агрегат Э-8 запускается с помощью электростартера, может запускаться он также вручную с при­менением декомпрессии и свечей накаливания. Электроагрегат Э-8 включает дизель 24 8,5/11 с генератором и радиатором, смон­тированными на общей сварной раме. Агрегат имеет системы, обеспечивающие автоматический подзаряд аккумулятора, автома­тическое поддержание заданной частоты вращения и напряжения, температуры охлаждающей жидкости и давления масла.

В качестве аварийного дизель-генератора на судах часто применяются дизель-электри­ческие агрегаты типов Ш00А, ТЭЮОА (Швеция). Для привода генератора используются шестицилиндро­вые четырехтактные дизели с непосредственным впрыском (коли­чество циркуляционного масла в системе 20 л, охлаждающей жидкости 36 л). Система охлаждения дизель-генератора имеет радиатор.

Основные параметры шлюпочных и катерных ДРУ, установлен­ных на отечественных судах, приведены в табл. 3.13 и 3.14.

Как сделать простейший двигатель внутреннего сгорания?

Устройство ДВС изучается в школе старшеклассниками. Поэтому даже подросток сможет сделать простейший двигатель внутреннего сгорания своими руками. Для его изготовления нужно взять:

  • Проволоку.
  • Лист картона.
  • Клей.
  • Моторчик.
  • Несколько шестерен.
  • Батарейку 9V.
  1. Сначала из картона следует вырезать круг, который будет играть роль коленчатого вала.
  2. Далее из картона для изготовления шатуна нужно вырезать прямоугольник размером 15х8 см, сложить его вдвое и затем — еще на 90˚. На его концах делаются отверстия.
  3. Далее из картонного листа изготовляется поршень с отверстиями для поршневых пальцев.
  4. Размер поршневых пальцев должен соответствовать размеру отверстия в поршне.
  5. Поршень закрепляется пальцем на шатуне, а его проволокой нужно прикрепить к коленвалу.
  6. В соответствии с размером поршня следует свернуть из картона цилиндр, а в соответствии с размером коленчатого вала — коробочку для самого коленвала.

Сообщений 1 страница 30 из 149

Поделиться118 мая, 2021г. 12:11:28

  • Автор: Серёга_____
  • Активный участник
  • Откуда: Одесса
  • Зарегистрирован : 4 апреля, 2014г.
  • Приглашений: 0
  • Сообщений: 405
  • Уважение: [+5/-0]
  • Позитив: [+6/-0]
  • Пол: Мужской
  • Возраст: 24 [1995-12-13]
  • Провел на форуме: 12 дней 7 часов
  • Последний визит: 16 июня, 2021г. 11:40:34

Всем привет)) Хотел написать позже (после испытаний и снять на видео работу движка) Но начну пожалуй сейчас. На фото пускач от трактора, тнвд от т-25 переделанный под один выход высокого давления. В двигателе чугунный поршень (нет колец) цилиндр сделан под поршень. Головка цилиндра сточена под самый минимум, есть свеча накала. Форсунка от зил-645. Компрессия такая что первый раз когда запускали двигатель алюминиевый корпус стартера не выдержал и лопнул в том месте где втулка. На это всё ушло почти всё лето. Буду ставить более крепкий стартер с редуктором и скорее всего под 24 вольта.

Поделиться218 мая, 2021г. 12:52:33

  • Автор: Серёга_____
  • Активный участник
  • Откуда: Одесса
  • Зарегистрирован : 4 апреля, 2014г.
  • Приглашений: 0
  • Сообщений: 405
  • Уважение: [+5/-0]
  • Позитив: [+6/-0]
  • Пол: Мужской
  • Возраст: 24 [1995-12-13]
  • Провел на форуме: 12 дней 7 часов
  • Последний визит: 16 июня, 2021г. 11:40:34

Совет для тех кто возможно тоже планировал или планирует что то подобное. Не советую ставить ТНВД, оооочень много мороки было всё переделать. Лучше насос-форсунка. Жалею что поспешил с тнвд.

Отредактировано Серёга_____ (18 мая, 2021г. 12:52:52)

Поделиться318 мая, 2021г. 16:28:42

  • Автор: polnick679
  • Ветеран
  • Откуда: Московская обл. г.Сходня.
  • Зарегистрирован : 13 ноября, 2010г.
  • Приглашений: 0
  • Сообщений: 632
  • Уважение: [+27/-1]
  • Позитив: [+28/-0]
  • Пол: Мужской
  • Возраст: 45 [1975-02-27]
  • Провел на форуме: 26 дней 11 часов
  • Последний визит: Сегодня 19:19:54

Серёга_____ А кино про него покажешь?

Поделиться418 мая, 2021г. 16:52:04

  • Автор: Фома 53
  • Ветеран
  • Откуда: Армавир Краснодарского кр.
  • Зарегистрирован : 21 ноября, 2021г.
  • Приглашений: 0
  • Сообщений: 557
  • Уважение: [+14/-0]
  • Позитив: [+2/-0]
  • Пол: Мужской
  • Возраст: 67 [1953-10-15]
  • Провел на форуме: 11 дней 14 часов
  • Последний визит: Сегодня 07:45:54

Серёга_____ А кино про него покажешь?

Да, не перевелись в Одессе богатыри! Да ты хоть знаешь сколько копий было сломано в спорах о переделке подобных двигателей на дизель? Особенно удивило, что поршень без колец. Сколько и как отработал данный движок? Сам-то доволен, или это эксперимент ради эксперимента? Как считаешь, за сколько износится пара: чугун+чугун в поршневой? Вот сколько вопросов, только успевай отвечать. Сам хотел в своё время переделать двигатель «Паннонии» в дизель, только с насос-форсункой от ЯАЗовского двухтактного дизеля, смутила хлипкость поршня и шатуна, так и не попробовал.

Renault Logan 0.9 MT — европейская версия

Еще одна версия, которая пока не дошла до России, принадлежит корпорации Рено. Французы разработали два экономичных европейских двигателя 0.9 и 1.2 литра. Нас больше интересует первый силовой агрегат в рамках нашего обзора, поскольку он предлагает вполне адекватные технические характеристики. От компании Renault никто не ожидает технических прорывов. Это просто нормальная качественная техника без особых сложностей в обслуживании. Но двигатель 0.9 литра изменил многое:

  • силовой агрегат при своем вполне демократичном объеме оказался достаточно мощным — 90 лошадиных сил под капотом выручают во многих ситуациях;
  • динамика оказалась даже лучше, чем в случае с предыдущим участником — машинка разгоняется до сотни за 11.1 секунды;
  • максимальную скорость ограничили на показателе 175 километров в час, что оказывается прекрасным достижением для такого агрегата;
  • механическая коробка выглядит вполне логичным решением в паре с таким интересным и технологичным двигателем;
  • расход топлива в смешанном цикле составляет 5.2 литра — это очень хороший показатель с оглядкой на все остальные особенности транспортного средства.
Читайте также:
Автодиагностика своими руками – легко ли освоить данное ремесло? + видео

Нужно признать, что компания Renault обошла всех своих конкурентов, активно разрабатывая современные технологии для экономии топлива. Машины корпорации отвечают всем стандартам качества и вполне адекватны по стоимости. Интересно, что в Европе Dacia Logan с таким двигателем признана самым дешевым транспортным средством. Это говорит о том, что современные и качественные разработки оказались еще и не столь дорогостоящими, что отправляет еще один большой плюс в копилку производителя. Ну а пока такой Логан не завозят в Россию, предлагаем посмотреть видео Kia Picanto с малым силовым агрегатом:

Гениальное – просто: в России придумали, как улучшить ДВС

Что если двигатель вашего автомобиля после небольшой доработки способен стать мощнее, при этом быть надёжнее, да ещё и расходовать меньше топлива? Не верите подобным сказкам? Но ведь речь не о какой-то кулибинщине, а о полноценном научном исследовании, уже подтверждённом на практике!

Знай наших

Л етом 2017 года научно-техническое сообщество облетела новость – молодой учёный из Екатеринбурга победил в общероссийском конкурсе инновационных проектов в области энергетики. Конкурс называется «Энергия прорыва», к участию допускаются учёные не старше 45 лет, и Леонид Плотников, доцент «Уральского федерального университета имени первого президента России Б.Н. Ельцина» (УрФУ), удостоился в нём приза в 1 000 000 рублей.

Сообщалось, что Леонид разработал четыре оригинальных технических решения и получил семь патентов для систем впуска и выпуска ДВС, как турбированных, так и атмосферных. В частности, доработка впускной системы турбомотора «по методу Плотникова» способна исключить перегрев, снизить шумность и количество вредных выбросов. А модернизация выпускной системы турбированного ДВС на 2% повышает КПД и на 1,5% снижает удельный расход топлива. В итоге мотор становится более экологичным, стабильным, мощным и надёжным.

Действительно ли всё это так? В чём суть предложений учёного? Нам удалось побеседовать с победителем конкурса и всё разузнать. Из всех оригинальных технических решений, разработанных Плотниковым, мы остановились как раз на обозначенных выше двух: доработанных системах впуска и выпуска турбированных моторов. Возможно, стиль изложения поначалу покажется вам сложным для восприятия, но читайте вдумчиво, и в конце мы доберёмся до сути.

Проблемы и задачи

Авторство описанных ниже разработок принадлежит группе учёных УрФУ, в которую входят доктор технических наук, профессор Бродов Ю.М., доктор физико-математических наук, профессор Жилкин Б.П. и кандидат технических наук, доцент Плотников Л.В. Работа именно этой группы удостоилась гранта в миллион рублей. В инженерной проработке предлагаемых технических решений им помогали специалисты ООО «Уральский дизель-моторный завод», а именно, начальник отдела, кандидат технических наук Шестаков Д.С. и заместитель главного конструктора, кандидат технических наук Григорьев Н.И.

Одним из ключевых параметров их исследования стала теплоотдача, идущая от потока газа в стенки впускного или выпускного трубопровода. Чем теплоотдача ниже, тем меньше термические напряжения, выше надёжность и производительность системы в целом. Для оценки интенсивности теплоотдачи используют параметр, который называется локальным коэффициентом теплоотдачи (он обозначается как αх), и задача исследователей состояла в том, чтобы найти пути уменьшения этого коэффициента.

Рис. 1. Изменение локального (lх = 150 мм) коэффициента теплоотдачи αх (1) и скорости потока воздуха wх (2) во времени τ за свободным компрессором турбокомпрессора (далее – ТК) при гладком круглом трубопроводе и разных частотах вращения ротора ТК: а) nтк = 35 000 мин-1; б) nтк = 46 000 мин-1

Вопрос для современного двигателестроения серьёзный, поскольку газовоздушные тракты входят в перечень наиболее термонагруженных элементов современных ДВС, и особенно остро задача снижения теплоотдачи в впускном и выпускном трактах стоит для турбированных двигателей. Ведь в турбомоторах, по сравнению с атмосферниками, повышены давление и температура на впуске, увеличена средняя температура цикла, выше пульсация газа, которая вызывает термомеханические напряжения. Термонагруженность ведёт к усталости деталей, снижает надёжность и срок службы элементов двигателя, а также приводит к неоптимальным условиям сгорания топлива в цилиндрах и падению мощности.

Учёные считают, что термическую напряженность турбодвижка можно снизить, и тут, как говорится, есть нюанс. Обычно для турбокомпрессора считаются важными две его характеристики – давление наддува и расход воздуха, а сам узел в расчётах принимается статичным элементом. Но на самом деле, отмечают исследователи, после установки турбокомпрессора существенно изменяются тепломеханические характеристики потока газа. Поэтому прежде чем изучать то, как меняется αх на впуске и выпуске, надо исследовать сам поток газа закомпрессором. Сначала – без учёта поршневой части двигателя (что называется, за свободным компрессором, см. рис. 1), а потом – вместе с ней.

Была разработана и создана автоматизированная система сбора и обработки экспериментальных данных – с пары датчиков снимались и обрабатывались значения скорости потока газа wх и локального коэффициента теплоотдачи αх. Кроме того, была собрана одноцилиндровая модель двигателя на базе мотора ВАЗ-11113 с турбокомпрессором ТКР-6.

Рис. 2. Зависимость локального (lх = 150 мм) коэффициента теплоотдачи αх от угла поворота коленчатого вала φ во впускном трубопроводе поршневого ДВС с наддувом при разных частотах вращения коленчатого вала и разных частотах вращения ротора ТК: а) n = 1 500 мин-1; б) n = 3 000 мин-1, 1 — n = 35 000 мин-1; 2 — nтк = 42 000 мин-1; 3 — nтк = 46 000 мин-1

Проведённые исследования показали, что турбокомпрессор – мощнейший источник турбулентности, которая влияет на тепломеханические характеристики потока воздуха (см. рис. 2). Кроме того, исследователи установили, что сама по себе установка турбокомпрессора повышает αх на впуске двигателя примерно на 30% — отчасти из-за того, что воздух после компрессора просто значительно горячее, чем на впуске атмосферного мотора. Была замерена и теплоотдача на выпуске мотора с установленным турбокомпрессором, и оказалось, что чем выше избыточное давление, тем менее интенсивно происходит теплоотдача.

Рис. 3. Схема впускной системы двигателя с наддувом с возможностью сброса части нагнетаемого воздуха: 1 — впускной коллектор; 2 — соединительный патрубок; 3 — соединительные элементы; 4 — компрессор ТК; 5 — электронный блок управления двигателем; 6 — электропневмоклапан].

В сумме получается, что для снижения термонагруженности необхожимо следующее: во впускном тракте нужно уменьшать турбулентность и пульсацию воздуха, а на выпуске – создавать дополнительное давление или разрежение, разгоняя поток – это снизит теплоотдачу, а кроме того, положительно скажется на очистке цилиндров от отработанных газов.

Читайте также:
Ремкомплект рулевой рейки – способ поменять его самостоятельно + видео

Все эти вроде бы очевидные вещи нуждались в детальных замерах и в анализе, которого никто ранее не делал. Именно полученные цифры позволили выработать меры, которые в будущем способны если не произвести революцию, то уж точно вдохнуть, в прямом смысле слова, новую жизнь во всю отрасль двигателестроения.

Рис. 4. Зависимость локального (lх = 150 мм) коэффициента теплоотдачи αх от угла поворота коленчатого вала φ во впускном трубопроводе поршневого ДВС с наддувом (nтк = 35 000 мин-1) при частоте вращения коленчатого вала n = 3 000 мин-1. Доля сброса воздуха: 1 — G1 = 0,04; 2 — G2 = 0,07; 3 — G3 = 0,12].

Сброс избытка воздуха на впуске

Во-первых, исследователи предложили конструкцию, позволяющую стабилизировать поток воздуха на впуске (см. рис. 3). Электропневмоклапан, врезанный во впускной тракт после турбины и в определённые моменты сбрасывающий часть сжатого турбокомпрессором воздуха, стабилизирует поток– уменьшает пульсацию скорости и давления. В итоге это должно привести к снижению аэродинамического шума и термических напряжений во впускном тракте.

А сколько же нужно сбросить, чтобы система эффективно работала, не ослабляя значительно эффекта турбонаддува? На рисунках 4 и 5 мы видим результаты проведённых замеров: как показывают исследования, оптимальная доля сбрасываемого воздуха G лежит в диапазоне от 7 до 12% – такие значения снижают теплоотдачу (а значит – и термонагруженность) во впускном тракте двигателя до 30%, то есть, приводят её к значениям, характерным для атмосферных моторов. Дальше увеличивать долю сброса смысла нет – эффекта это уже не даёт.

Рис. 5. Сравнение зависимостей локального (lх = 150 мм, d = 30 мм) коэффициента теплоотдачи αх от угла поворота коленчатого вала φ во впускном трубопроводе поршневого ДВС с наддувом без сброса (1) и со сбросом части воздуха (2) при nтк = 35 000 мин-1 и n = 3 000 мин-1, доля сброса избыточного воздуха равна 12% от общего расхода].

Эжекция на выпуске

Ну а что же выпускная система? Как мы говорили выше, она в турбированном моторе тоже работает в условиях повышенных температур, а кроме того, выпуск всегда хочется сделать как можно более способствующим максимальной очистке цилиндров от отработавших газов. Традиционные методы решения этих задач уже исчерпаны, есть ли тут ещё какие-то резервы для улучшения? Оказывается, есть.

Бродов, Жилкин и Плотников утверждают, что улучшить газоочистку и надёжность выпускной системы можно путём создания в ней дополнительного разрежения, или эжекции. Эжекционный поток, по мнению разработчиков, так же, как и клапан на впуске, снижает пульсацию потока и увеличивает объёмный расход воздуха, что способствует лучшей очистке цилиндров и повышению мощности двигателя.

Рис. 6. Схема выпускной системы с эжектором: 1 – головка цилиндра с каналом; 2 – выпускной трубопровод; 3 – труба выхлопная; 4 – эжекционная трубка; 5 – электропневмоклапан; 6 – электронный блок управления].

Эжекция положительно влияет на теплоотдачу от выпускных газов к деталям выпускного тракта (см. рис. 7): с такой системой максимальные значения локального коэффициента теплоотдачи αхполучаются на 20% ниже, чем при традиционном выпуске – за исключением периода закрытия впускного клапана, тут интенсивность теплоотдачи, напротив, несколько выше. Но в целом теплоотдача всё равно меньше, и исследователи сделали предположение, что эжектор на выпуске турбомотора повысит его надёжность, так как снизит теплоотдачу от газов стенкам трубопровода, а сами газы будут охлаждаться эжекционным воздухом.

Рис. 7.Зависимости локального (lх = 140 мм) коэффициента теплоотдачи αх от угла поворота коленчатого вала φ в выпускной системе при избыточном давлении выпуска рb = 0,2 МПа и частоте вращения коленчатого вала n = 1 500 мин-1. Конфигурация выпускной системы: 1 — без эжекции; 2 — с эжекцией.]

А если объединить.

Получив такие выводы на экспериментальной установке, учёные пошли дальше и применили полученные знания на реальном двигателе – в качестве одного из «подопытных» был выбран дизель 8ДМ-21ЛМ производства ООО «Уральский дизель-моторный завод».Такие моторы применяются в качестве стационарных энергоустановок. Кроме того, в работах использовался и «младший брат» 8-цилиндрового дизеля, 6ДМ-21ЛМ, также V-образный, но имеющий шесть цилиндров.

Рис. 8. Установка электромагнитного клапана для сброса части воздуха на дизеле 8ДМ-21ЛМ: 1 — клапан электромагнитный; 2 — впускной патрубок; 3 — кожух выпускного коллектора; 4 — турбокомпрессор.

На «младшем» моторе была реализована система эжекции на выпуске, логично и весьма остроумно объединённая с системой сброса давления на впуске, которую мы рассмотрели чуть ранее – ведь как было показано на рисунке 3, сбрасываемый воздух может использоваться для нужд двигателя. Как видим (рис. 9), над выпускным коллектором проложены трубки, в которые подаётся воздух, забранный со впуска – это то самое избыточное давление, создающее турбулентность после компрессора. Воздух из трубок «раздаётся» через систему электроклапанов, которые стоят сразу за выпускным окном каждого из шести цилиндров.

Рис. 9. Общий вид модернизированной выпускной системы двигателя 6ДМ-21ЛМ: 1 – выпускной трубопровод; 2 – турбокомпрессор; 3 – газоотводящий патрубок; 4 – система эжекции.

Такое эжекционное устройство создаёт дополнительное разрежение в выпускном коллекторе, что ведёт к выравниванию течения газов и ослаблению переходных процессов в так называемом переходном слое. Авторы исследования замерили скорость потока воздуха wх в зависимости от угла поворота коленчатого вала φ с применением эжекции на выпуске и без неё.

Из рисунка 10 видно, что при эжекции максимальная скорость потока выше, а после закрытия выпускного клапана она падает медленнее, чем в коллекторе без такой системы – получается своеобразный «эффект продувки». Авторы говорят, что результаты свидетельствуют о стабилизации потока и лучшей очистке цилиндров двигателя от отработавших газов.

Рис. 10. Зависимости местной (lx = 140 мм, d = 30 мм) скорости потока газа wх в выпускном трубопроводе с эжекцией (1) и традиционном трубопроводе (2) от угла поворота коленчатого вала φ при частоте вращения коленчатого вала n = 3000 мин-1 и начальном избыточном давлении pb = 2,0 бар.

Что в итоге

Итак, давайте по порядку. Во-первых, если из впускного коллектора турбомотора сбрасывать небольшую часть сжатого компрессором воздуха, можно снизить теплоотдачу от воздуха к стенкам коллектора до 30% и при этом сохранить массовый расход воздуха, поступающего в мотор, на нормальном уровне. Во-вторых, если применить эжекцию на выпуске, то теплоотдачу в выпускном коллекторе тоже можно существенно снизить – проведённые замеры дают величину около 15%, – а также улучшить газоочистку цилиндров.

Читайте также:
Как и чем запаять трещину не снимая бензобаки: как устранить течь + видео

Объединяя показанные научные находки для впускного и выпускного трактов в единую систему, мы получим комплексный эффект: забирая часть воздуха со впуска, передавая её на выпуск и точно синхронизировав эти импульсы по времени, система будет выравнивать и «успокаивать» процессы течения воздуха и отработавших газов. В результате мы должны получить менее термонагруженный, более надёжный и производительный по сравнению с обычным турбомотором двигатель.

Итак, результаты получены в лабораторных условиях, подтверждены математическим моделированием и аналитическими расчетами, после чего создан опытный образец, на котором проведены испытания и подтверждены положительные эффекты. Пока всё это реализовано в стенах УрФУ на большом стационарном турбодизеле (моторы такого типа используют также на тепловозах и судах), однако заложенные в конструкцию принципы могли бы прижиться и на моторах поменьше – представьте, например, что ГАЗ Газель, УАЗ Патриот или LADA Vesta получают новый турбомотор, да ещё с характеристиками лучше, чем у зарубежных аналогов… Возможно ли, чтобы новая тенденция в двигателестроении началась в России?

Есть у учёных из УрФУ и решения для снижения термонагруженности атмосферных моторов, и одно из них – профилирование каналов: поперечное (путём введения вставки квадратного или треугольного сечения) и продольное. В принципе, по всем этим решениям сейчас можно строить рабочие образцы, проводить испытания и при их положительном исходе запускать серийное производство – заданные проектно-конструкторские направления, по мнению учёных, не требуют значительных финансовых и временных затрат. Теперь должны найтись заинтересованные производители.

Леонид Плотников говорит, что считает себя в первую очередь учёным и не ставит цели коммерциализировать новые разработки.

Среди целей я, скорее, назвал бы проведение дальнейших исследований, получение новых научных результатов, разработку оригинальных конструкций газовоздушных систем поршневых ДВС. Если мои результаты будут полезны промышленности, то я буду рад. По опыту знаю, что внедрение результатов – очень сложный и трудоемкий процесс, и если в него погружаться, то на науку и преподавание не останется времени. А я больше склонен именно к области образования и науки, а не к промышленности и бизнесу

Однако добавляет, что уже начался процесс внедрения результатов исследования на энергомашины ПАО «Уралмашзавод». Темпы внедрения пока невысоки, вся работа находится на начальном этапе, и конкретики очень мало, однако заинтересованность у предприятия есть. Остаётся надеяться на то, что результаты этого внедрения мы всё же увидим. А также на то, что работа учёных найдёт применение в отечественном автопроме.

Что будет с ДВС: 3 сценария и особый путь России

Чего ждем

Похоже, весть о введении в 2025 году нового стандарта выбросов Евро‑7 поразила Европу сильнее, чем легализация наркотиков и однополых браков.

Все издания процитировали главу Немецкой ассоциации автомобильной промышленности (VDA) Хильдегарду Мюллер:

«Де-факто это запрет двигателей внутреннего сгорания».

Нормы Евро‑7 как таковые пока не оглашены. Ожидают, что главное изменение — снижение выбросов оксидов азота (NOx) до 30 мг/км! Это вдвое жестче, чем по нормам Евро‑6: для дизелей — 80 мг/км, для бензиновых моторов — 60 мг/км. И это труднодостижимо — прежде всего, для дизелей. Сейчас в дизельных моторах с оксидами азота сражается сложная и дорогая система впрыска водного раствора мочевины. Кроме того, выбросы не должны будут выходить за обозначенные рамки при температурах от —10 до +40˚ С и на протяжении 15 лет или 240 тысяч километров пробега.

Один из самых распространенных биологических механизмов — молнии. Каждая молния преобразует 7 кг азота в оксид азота, за год таким образом получается 8,6 млн т. Это почти в три раза больше, чем попадает в атмосферу из-за автомобильного транспорта в ЕС.

Нормы Евро‑7 подразумевают прекращение выпуска и продаж машин стандарта Евро‑6 во всех странах Евросоюза. Бензиновые моторы вполне могут выдержать требования Евро‑7, но у дизелей дела плохи. Так что г‑жа Мюллер права лишь отчасти — и возможны несколько вариантов.

Первый сценарий будущего: жесткий

Проблема не в том, что невозможно создать ДВС, отвечающие нормам Евро‑7. Машина с таким двигателем выйдет слишком дорогой. Поэтому с 2025 года все европейские компании выпускают только электромобили. И водородомобили для тех, кому не хочется стоять на зарядных станциях по часу. Сегодняшние машины на водородном топливе могут преодолевать 500–700 км. Правда, у них есть сложности с пуском при минусовых температурах.

Производственные трудности невелики, в линейке большинства мировых фирм уже есть электромобили и целые платформы для будущих электрокаров. Еще одну — Electric-Global Modular Platform — в конце прошлого года представил Hyundai. Volkswagen и без Евро‑7 давно заявил, что к 2026 году завершит работу с ДВС. А Mercedes-Benz год назад рапортовал, что ДВС нового поколения не планирует и сосредоточится на электротяге.

Стимулирующие покупателей электромобилей льготы и поблажки, которые кое-где сейчас действуют, к тому моменту отменят. Раньше надо было суетиться! Стимулировать, скорее всего, начнут скорейший отказ от ДВС — налогами. По­этому европейцы постараются не тянуть с заменой старенького зловонного Фиата или Ситроена.

Непростой задачей поначалу станет обслуживание электромобилей. Великобритания, например, сейчас столкнулась с тем, что только один из двадцати механиков обучен для работы с таким транспортом.

ЧЕЙ КЛАСС ЛУЧШЕ

Российские нормы содержания вредных веществ в выбросах автомобилей узаконены в ТР «О безопасности колесных транспортных средств» (единый норматив для стран-членов ЕАЭС). Все наши экологические классы с первого по шестой — отсылки к Правилам ООН. В России пятый класс действует с 1 января 2016 года. А в Евросоюзе годом ранее вступил в силу Евро‑6.

Что касается топлива, то российские экологические классы для бензина и солярки оговорены в отдельном техническом регламенте (ТР 013/2011) и ГОСТах «Топлива моторные. Бензин неэтилированный» и «Топливо дизельное ЕВРО». Ссылок на Правила ООН здесь нет, и наши топлива по ряду параметров незначительно отличаются от европейских. Экологические же классы (К2, К3, К4, К5) различаются исключительно по содержанию серы. Понятия К6 в наших документах пока нет. Роснефть больше года выпускает ­и продает бензин марки «Евро‑6» с улучшенными экологическими свойствами, но в документации он обозначен как АИ‑95‑К5.

Читайте также:
Сколько тормозной жидкости нужно для замены – порядок работы + видео

Второй сценарий будущего: мягкий

Производители, сознавая, что на электромобилях весь бизнес не вытянешь, разрабатывают инновационные ДВС. По примеру Мазды, только что показавшей прототипы новой линейки. Появятся новые автоматические коробки передач всех типов. У механики будущего нет — она портит выхлоп.

При сохранении массового производства стоимость новых моторов выйдет приемлемой. Число моделей с ДВС сильно уменьшится, но они и после 2025 года как минимум в форме гибридов останутся в строю наравне с электрическими. Разница в цене исчезнет, а в рекламе прозвучит: «Только машины с ДВС позволяют ехать 1000 км без остановки!»

Вообще, в Евросоюзе продают всего 17,5% новых машин, выпускаемых в мире. Меньше чем в США, меньше чем в Китае. А в большинстве стран еще долго будут царить местные экологические нормы. Так что заводы в Бразилии, Мексике, Индии, Турции и России продолжат миллионами выпускать привычные автомобили. Да и в США с Китаем, скорее всего, тоже.

«Нам придется еще долго полагаться на двигатели внутреннего сгорания».
Канцлер Германии Ангела Меркель, ноябрь 2020 года

КОРОТКОБОЙЩИКИ

Производители грузовиков реагируют на Евро‑7 спокойно. В декабре 2020 года Daimler Trucks, Scania, MAN, Volvo AB, DAF, Iveco и Ford Trucks подписали соглашение о прекращении продаж траков с ДВС… лишь в 2040 году. Хотя многие компании давно продают электрические и водородные грузовики, в том числе магистральные.

В большинстве стран мира быстрый отказ от грузовиков с ДВС невозможен. Сегодня немецкий перевозчик на водороде или электротяге не доберется до Челябинска. Да и до Греции, пожалуй, тоже. Сети соответствующих заправок развиты неравномерно даже в Евросоюзе.

Главные препятствия продвижения водородных грузовиков: дороговизна машин и топлива, низкий ресурс узлов, сложности с перевозкой водорода и его хранением. Даже у лучших электрических образцов мал запас хода — 300–400 км (у камазовского грузовика Moskva — 200 км). Быстрая зарядка занимает час-полтора, медленная — до десяти часов. Заявленные показатели инновационного тягача Tesla Semi (на иллюстрации) намного выше (500–960 км, зарядка до 80% на специальной станции — за полчаса), но почему-то начало его продаж откладывалось уже три раза.

Транспортный сектор обеспечивает примерно 20% от глобального объема выбросов углекислого газа (8 млрд т в год).

Среди всех видов транспорта наибольшую экологическую нагрузку дают автомобили: 30% — грузовые, 45% — пассажирские (включая автобусы и мотоциклы). Для сравнения, на пассажирские и грузовые авиаперевозки приходится менее 12% выбросов, на морские перевозки — 11%, а на железнодорожный транспорт и вовсе 1%

Выбросы взвешенных частиц не только и не столько зависят от типа двигателя и экологического стандарта топлива, сколько от общего состояния автомобиля и дорожной инфраструктуры.

По данным исследований, проведенных в Великобритании и России, на отработавшие газы приходится только 28% выбросов, 7% — на тормозную систему, 12% — на износ шин, а больше всего — 53% — на износ дорожного покрытия

Сценарий российский, реалистичный

Весной 2031 года мэр Москвы торжественно откроет тысячную зарядную станцию в столице. «За десять лет продажи электромобилей в России выросли в десять раз и составили 3530 штук!» — скажет мэр, умолчав о том, что четверть станций в данный момент неработоспособна, а во всей остальной России таких заправок меньше сотни. Затем все сядут на выпущенные в Подмосковье Мерседесы S‑класса с бензиновыми моторами — и разъедутся.

Зимой электромобили с севшими батареями десятками беспомощно стоят в тоннелях и на эстакадах, ожидая мобильную техпомощь (с дизельными генераторами) и усугубляя пробки. Их замерзающих владельцев весело троллят водители Солярисов и Ларгусов.

А если серьезно, то всего год назад приняты поправки в Приложение 1 Технического регламента Евразийского экономического союза, оговаривающие существование в России шестого экологического класса. До того в странах ЕАЭС предусматривали только пять экологических классов, и стало невозможно выдавать ПТС для транспортных средств «с выхлопом Евро‑6», поступающих в продажу. Появление шестого класса не предполагает новых ограничений для машин, продаваемых у нас, или новых требований к топливу — это всего лишь констатация факта, что такие автомобили существуют в природе.

И Евро‑7 в обозримом будущем нам ничем не грозит, поскольку мы движемся с отставанием от Европы на 10–15 лет. Примерно до 2040 года можно не беспокоиться об установке индивидуальной розетки во дворе. И надо крепко подумать, стоит ли нам вообще гнаться за Европой: применительно к Мурманску или Норильску электромобиль выглядит нелепицей сейчас — и за 10–15 лет законы физики вряд ли изменятся.

КАК УЛУЧШИТЬ ДВС?

Способов оптимизации сгорания много, отнюдь не фантастических, и они постепенно воплощаются серийно. Так, компания Mazda реализовала на дизеле 2.2 SkyActiv-D рекордно низкую степень сжатия 14,1:1. Результат: более низкое давление и температура в верхней части поршня, лучшее смешение воздуха и топлива, меньше оксидов азота и сажи на выпуске. На бензиновом SkyActiv-X (2018 год) впервые применено воспламенение от сжатия, что значительно повысило КПД и дало большой выигрыш по экологии.

Многие фирмы работают с переменной степенью сжатия, регулируемыми в широких пределах фазами газораспределения, охлаждением отработанных газов, новыми технологиями впрыска, автоматическим отключением невостребованных цилиндров.

Наконец, самый радикальный подход: технология FreeValve от шведского производителя суперкаров Koenigsegg. Не нужны распредвалы, привод ГРМ, дроссельная заслонка — всем процессом газораспределения занимаются компактные электромагнитные актуаторы. Фазы меняются без ограничений, что позволяет в зависимости от режима использовать несколько выгодных термодинамических циклов помимо стандартного цикла Отто и имитировать изменение степени сжатия. Выбросы теоретически возможны нулевые.

Быстрому созданию «идеального ДВС» препятствуют конкуренция и патентная система. Но в критической для всех ситуации заводы, возможно, найдут общий язык.

Линейные двигатели внутреннего сгорания — в роли портативных источников энергии и не только

Более 100 лет известен такой механизм, как двигатель внутреннего сгорания.

Читайте также:
Как проверить гидрокомпенсаторы на работоспособность - инструкции к ВАЗ и иномаркам

Двигатели данного типа применяются повсеместно, как наиболее распространённый способ преобразования химической энергии в механическое движение.

Однако существует еще один вид совершенно замечательного двигателя — который называется линейным двигателем внутреннего сгорания. Простота устройства, высокая скорость работы и эффективность — делают такой двигатель весьма перспективным, для использования в рамках множества задач.

Все двигатели внутреннего сгорания можно условно подразделить на три крупных вида:

в них процесс осуществления полезной работы и наполнения цилиндра двигателя новой порцией смеси для сжигания, — производится за 2 движения поршня. При движении поршня вниз — производится полезная работа, при движении его в обратном направлении, то есть верх, — осуществляется сжатие поступивший смеси, для последующего её сжигания;

в них процесс осуществления полезной работы, продувка цилиндра от продуктов сгорания и заполнение его новой порцией смеси, — осуществляется за 4 движения поршня:

  • при первом движении поршня вниз, осуществляется полезная работа;
  • при последующем движении поршня вверх, происходит продувка цилиндра от продуктов сгорания;
  • при втором движении поршня вниз, осуществляется заполнение цилиндра свежей порцией смеси;
  • при последующем втором движении поршня вверх, происходит сжатие поступившей свежей смеси, для последующего её сжигания.

3) дизельные двигатели:

суть которых заключается в том, что сжигание смеси происходит за счёт резкого повышения давления, а следовательно и температуры, которая собственно и поджигает поступившую в цилиндр смесь.

Кроме того, существуют различные комбинации между этими перечисленными выше тремя видами. Однако, несмотря на попытки инженеров как-то скомбинировать эти три подхода, в основном, прижились именно они, в «чистом» виде.

Несмотря на широкое распространение двигателей внутреннего сгорания, существует один особый подвид двигателей, который хоть и не получил широкое распространение (на которое он вправе рассчитывать), тем не менее, в некоторых сферах он всё равно применяется.

Суть таких двигателей заключается в том, что они существенно проще классических двигателей внутреннего сгорания. Проще потому, что в их конструкции полностью исключена такая массивная и сложная система деталей, как «кривошипно-шатунный механизм».

Оппозитный поршневой двигатель с внешним сжатием

Двигатель с противоположным поршнем и внутренним сжатием

Однопоршневой двигатель одностороннего действия с возвратным механизмом

Свободнопоршневой двигатель

Свободнопоршневой двигатель двойного действия

В обычных двигателях данный механизм служит для того, чтобы произвести полезную работу, а также вернуть поршень в изначальное положение, которое он занимал до начала движения.

Система получается достаточно стабильной, прогнозируемой, может быть легко настраиваемой.

Однако, такое усложнение системы не проходит даром, — это приводит к тому, что существенно усложняется механизм в целом, утяжеляется двигатель, возникают разнообразные паразитные явления, которые приводят к повышенному износу цилиндро-поршневой группы.

Среди таких явлений можно назвать знакопеременные нагрузки на поршень, которые оказывают на него раскачивающие движения влево/вправо. Данные движения приводят к повышенному износу поршня и цилиндра.

Кроме того, наличие больших вращающихся масс, приводит к паразитным вибрациям, которые расшатывают конструкцию в целом и увеличивают затраты энергии на осуществление движения.

В отличие от таких классических двигателей, линейные двигатели внутреннего сгорания лишены всех этих недостатков: по своей сути, они представляют собой просто поршень, движущийся прямолинейно и не имеющий каких-либо кривошипно-шатунных механизмов.

Каким же тогда образом, поршень возвращается в первоначальное положение? Для этого существует множество схем.

Среди наиболее распространенных подходов, применяются:

  1. использование противоположной рабочему цилиндру камеры, — в качестве газовой пружины;
  2. уравновешивание одного поршня другим, точно таким же поршнем, движущимся в противоположном направлении;
  3. связывание двух поршней движущихся в противоположных направлениях — жёсткой рычажной сцепкой;
  4. отсутствие какого-либо балансирования движущегося поршня, за счёт того, что вся система установлена на жестком массивном основании. Это позволяет гасить возникающие вибрации;
  5. иные конструкции, а также комбинации всего вышеперечисленного.

Линейный двигатель внутреннего сгорания позволяет очень легко реализовать эффективный генератор электрического тока.

По сути, для создания такого генератора необходимо просто быстро перемещать, закреплённый на связанной с поршнем оси, сильный магнит, сквозь кольцевую обмотку статора, например, как в этом «трясущемся фонарике»:

Благодаря своей простоте, данные двигатели могут развивать достаточно большие скорости. В частности, имеется информация о достижении такими двигателями частоты в 390 Герц (390 движений поршня в секунду и, соответственно, 23400 – в минуту).

Кроме того, двигатели данного типа могут быть использованы в качестве компактных и мощных источников энергии, достаточно простой конструкции. Именно это привлекает к данным двигателям повышенное внимание оборонной промышленности по всему миру.

Некоторые исследователи проводят достаточно интересные опыты, которые позволяют детально оценить эффективность таких двигателей.

В частности, группой учёных была проведена серия работ, направленная на исследование применимости линейных двигателей в военных нуждах.

Исследователи во главу угла ставили возможность создания миниатюрных систем и возможность обеспечивать высокую плотность хранимой энергии, несмотря на свои небольшие размеры.

Для этого был разработан двухтактный двигатель линейного типа, который для возврата поршня в изначальное положение использовал в пружину, с прямоугольным сечением проволоки в ней.


(Источник картинки: “№4” — в списке использованных источников, под этой статьёй)

Тесты показали, что генераторы данного типа обладают очень большим потенциалом. А именно, они могут работать на очень большой частоте, в течение продолжительного времени.


Генератор на 300 ватт и на 5 ватт — в сравнении со стандартной батарейкой, формата АА (Источник картинки: “№4” — в списке использованных источников, под этой статьёй)

В ходе поставленного эксперимента показанный на рисунке генератор мощностью 5-10 Вт проработал в течение 100 часов, работая с частотой в 390 Герц. При этом КПД генератора составил 90%.

В ходе тестирования были выявлены следующие существенные моменты:

  • из-за отсутствия жесткой связи с отсутствующей кривошипно-шатунной системой, генератор имеет переменную степень сжатия, которая позволяет ему легко работать с разными видами топлива, в режиме цикла Дизеля. Другими словами, двигатель может легко воспламенять любое топливо, используя в качестве зажигающего воздействия высокую температуру от сжатия;
  • благодаря отсутствию знакопеременных нагрузок, «раскачивающего» типа, которые являются одними из основных, в стандартных двигателях с кривошипно-шатунным механизмом, данный генератор может хорошо работать с минимальной смазкой или совсем без оной;
  • плотность энергии, хранимой в качестве химического топлива и вырабатываемая с использованием данного генератора, — превосходит как аккумуляторные батареи любого типа, так и топливные элементы;
  • миниатюрность размеров, высокая плотность хранения энергии, дешевизна производства — делают генераторы такого типа особенно привлекательными для использования их в качестве миниатюрных источников энергии, для небольших летающих дронов военного назначения.
Читайте также:
Как проверить аккумулятора автомобиля на работоспособность: заряд АКБ мультиметром (тестером) и нагрузочной вилкой, уровень и плотность


Плотность хранимой энергии, по сравнению с перезаряжаемыми аккумуляторами
(Источник картинки: “№4” — в списке использованных источников, под этой статьёй)

Почему же, при таких очевидных преимуществах такого типа двигателей, они не получили широкого распространения и не вытеснили так хорошо известные нам двигатели с кривошипно-шатунным механизмом?

Наверное, ответ здесь заключается в том, что мир стал в определенной степени заложником сложившейся инфраструктуры, крупномасштабных производств и сети сервисных компаний, ориентированных на работу с классическими двигателями внутреннего сгорания.

Это одна сторона проблемы, вторая заключается в том, — что линейный двигатель внутреннего сгорания постоянно находится в зоне риска. Это проявляется в том, что двигатели постоянно балансирует на грани разрушения.

Этот риск является следствием того, что быстро движущийся поршень не имеет, как правило, какого-либо физического ограничителя (конструкции двигателей, которые требуют жесткой сцепки между поршнями, — мы сейчас осознанно опустим, так как любой инженер, старается использовать все преимущества такого типа двигателей).

А для этого требуется отказаться от каких-либо жестких сцепок и заставить двигатель работать исключительно с помощью контроля его движения с применением разнообразных факторов: сжимающихся газовых пружин; синхронно движущихся в разных направлениях и так же синхронно сходящихся в центре — уравновешенных поршней и т.д.

Нетрудно заметить из данного описания, что осуществление четкой синхронизации и контролируемого течения данного процесса, является весьма нетривиальной задачей и решается с переменным успехом.

При выходе же данного процесса из-под контроля, — это сразу же приведет к разрушению одного или нескольких поршней, а также цилиндров (ввиду удара поршней — в соответствующие «донышки» цилиндров).

Если же полностью отказаться от идеи устранения вибраций такого двигателя, используя одноцилиндровую схему, — это приведет к возникновению сильных вибраций, которые должны быть погашены массивным основанием.

Есть ещё одна неочевидная проблема, которая касается сложности пуска двигателей данного типа (мы ведь не забыли, что стараемся «выжать» из двигателя всё, поэтому мы не используем каких-либо жестких сцепок).

Обычно, пуск двигателя такого типа осуществляется с использованием импульса сжатого воздуха.

Все эти причины в своей совокупности, — сдерживают широкое распространение этих двигателей на коммерческом рынке.

Однако, в последнее время, ввиду широкого распространения разнообразных микроконтроллеров, делаются попытки по электронно-компьютерному контролю процессов, протекающих в двигателе рассматриваемого типа.

В частности, наблюдаются следующие подходы:

  1. ШИМ-контроль, когда для управления движением поршней, используется электрогенератор, связанный с движущимся поршнем или поршнями, использующийся в данный момент, в качестве «подруливающего электродвигателя»;
  2. установка точного времени впрыска и зажигания смеси в цилиндр. Современные средства позволяют достаточно точно контролировать местоположение поршня, давление в конкретном цилиндре, а также гарантировано осуществить зажигание смеси. Для этого могут быть использованы разнообразные датчики движения, давления, свечи поверхностного разряда, а также использование в конструкции цилиндров интегрированных в конструкцию цилиндров «форкамер» (данные камеры упрощают зажигание смеси);
  3. наиболее экзотическим из данного списка, является использование электромагнитных впускных и выпускных клапанов, которое позволяет четко контролировать момент и объем впускаемой/выпускаемой смеси. Данное направление является достаточно экстравагантным, хотя и применяется некоторыми компаниями в составе особо прогрессивных двигателей, используемых, в частности, в гонках «формулы-1».

Таким образом, как можно видеть, использование линейных двигателей внутреннего сгорания в качестве генераторов электрического тока является весьма интересным и перспективным.

Однако не стоит считать, что линейные двигатели являются исключительно прерогативой научных коллективов и не выходят за пределы «секретных лабораторий».

Многие любители достаточно успешно и легко строят свои действующие модели такого типа двигателей, используя в качестве цилиндров стеклянные трубки, а в качестве поршней — графитовые бобышки.

Например, следующий автор, видео которого приведены ниже, — строит двигатели именно такого типа, для собственного удовольствия.

В качестве источника искры, — используется электронная плата от зажигалки для газовой плиты:

Здесь следует сделать примечание: не все зажигалки для газовых кухонных плит используют пьезоэлектрический либо сетевой электрический источник получения электрической искры. Некоторые зажигалки используют в качестве такого источника маломощные платы, питаемые от одной батарейки размера АА, содержащие повышающую напряжение схему.

Кроме этого, достаточно давно некоторые компании выпускают трамбовки для дорог, которые базируются на двухтактных двигателях внутреннего сгорания. По своей сути, данные устройства являются не чем иным, как линейным двигателем, только используются в сугубо утилитарных целях, «далеких от высоких технологий»:

В целом, можно резюмировать, что разработка подобных линейных двигателей внутреннего сгорания является весьма перспективным занятием. В случае, если этим занимаются любители, данное занятие может быть весьма увлекательным и можно разработать свой собственный миниатюрный двигатель, буквально карманного формата (особенно это легко, при наличии своего токарного станка по металлу)!

Такой двигатель может стать хорошим подспорьем, в получении электроэнергии, при нахождении в местах, далеких от цивилизации.

Только помните, что если этот двигатель будет использоваться для генерации электроэнергии, и будет содержать электрогенератор на постоянных магнитах, данное устройство должно очень хорошо охлаждаться, так как магниты имеют характеристику, называемую «точка Кюри», — то есть это температура, при которой магнит размагничивается.

Так как разработчик электрогенератора вряд ли ставит своей целью «системно размагничивать магниты», — ему стоит учитывать этот существенный момент.

Использованные источники:

1. www.wikipedia.org
2. www.freikolben.ch/lineargeneratoren.shtml
3. www.freikolben.ch/basics-de.shtml
4. «Miniature Internal Combustion Engine-Generator For High Energy Density Portable Power»
Kurt D. Annen*, David B. Stickler, and Jim Woodroffe
Aerodyne Research, Inc
Billerica, MA 01821

Облачные серверы от Маклауд быстрые и безопасные.

Зарегистрируйтесь по ссылке выше или кликнув на баннер и получите 10% скидку на первый месяц аренды сервера любой конфигурации!

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: