Карбюратор – составные части, принцип работы, частые проблемы + видео

Что такое карбюратор и в чем его секрет?

В объявлениях о продаже автомобиля можно встретить немало предложений неновых, но вполне приличных машин в нормальном состоянии. Как говорится, «ездить и ездить». Но вот незадача – на выбранной машине установлен карбюратор. Довольно старое по своему типу устройство, которое отпугивает современных автолюбителей, особенно молодых людей, своей сложностью, возможным отсутствием ремонтных запчастей и возможными поломками. Покупать ли автомобиль с карбюратором, или найти более современную конструкцию с инжекторной топливной системой – принять решение можно только после того, как разберешься в нюансах работы и конструкции этого устройства.

  1. Что такое карбюратор и для чего он нужен?
  2. Устройство карбюратора
  3. Принцип работы карбюратора
  4. Типы карбюраторов
  5. Преимущества и недостатки карбюраторов
  6. Основные неисправности карбюраторов и их причины
  7. Заключение

Что такое карбюратор и для чего он нужен?

Чтобы двигатель внутреннего сгорания работал в оптимальном режиме, необходимо смешать топливо и воздух в определенной пропорции и подать эту смесь в камеру сгорания. Параметры смеси могут меняться в зависимости от режима работы ДВС, потребление топлива – тоже, а значит, необходимо устройство, которое в автоматическом режиме будет всё это делать.

Карбюратор – устройство для смешивания воздуха с топливом. В результате его работы в нужный момент в камеру сгорания двигателя поступает смешанный с воздухом распыленный бензин, готовый к воспламенению. Несмотря на то, что карбюратор один на несколько цилиндров, смесь через впускной коллектор всегда попадает в нужное место благодаря слаженной системе работы всех элементов ДВС.

Устройство карбюратора

До сегодняшних дней к нам добрались в основном поплавковые модели – самые последние и максимально усовершенствованные. Так что на большинстве автомобилей можно встретить именно их.

” data-medium-file=”https://i2.wp.com/vaznetaz.ru/wp-content/uploads/2019/10/устройство-карбюратора-2.jpg?fit=300%2C172&ssl=1″ data-large-file=”https://i2.wp.com/vaznetaz.ru/wp-content/uploads/2019/10/устройство-карбюратора-2.jpg?fit=700%2C402&ssl=1″ loading=”lazy” src=”https://i2.wp.com/vaznetaz.ru/wp-content/uploads/2019/10/%D1%83%D1%81%D1%82%D1%80%D0%BE%D0%B9%D1%81%D1%82%D0%B2%D0%BE-%D0%BA%D0%B0%D1%80%D0%B1%D1%8E%D1%80%D0%B0%D1%82%D0%BE%D1%80%D0%B0-2.jpg?resize=700%2C402&ssl=1″ alt=”устройство карбюратора ” width=”700″ height=”402″ data-recalc-dims=”1″ data-lazy-srcset=”https://i2.wp.com/vaznetaz.ru/wp-content/uploads/2019/10/устройство-карбюратора-2.jpg?w=725&ssl=1 725w, https://i2.wp.com/vaznetaz.ru/wp-content/uploads/2019/10/устройство-карбюратора-2.jpg?resize=300%2C172&ssl=1 300w” data-lazy-sizes=”(max-width: 700px) 100vw, 700px” data-lazy-src=”https://i2.wp.com/vaznetaz.ru/wp-content/uploads/2019/10/%D1%83%D1%81%D1%82%D1%80%D0%BE%D0%B9%D1%81%D1%82%D0%B2%D0%BE-%D0%BA%D0%B0%D1%80%D0%B1%D1%8E%D1%80%D0%B0%D1%82%D0%BE%D1%80%D0%B0-2.jpg?resize=700%2C402&is-pending-load=1#038;ssl=1″ srcset=”″> Устройство поплавкового карбюратора: 1 — регулировочный винт пускового устройства; 2 — штифт рычага 24, входящий в паз рычага 3; 3 — рычаг управления воздушной заслонкой; 4 — винт крепления тяги привода воздушной заслонки; 5 — регулировочный винт приоткрывания дроссельной заслонки первой камеры; 6 — рычаг дроссельной заслонки первой камеры; 7 — ось дроссельной заслонки первой камеры; 8 — рычаг привода дроссельной заслонки второй камеры; 9 — регулировочный винт количества смеси холостого хода; 10 — ось дроссельной заслонки второй камеры; 11 — рычаг дроссельной заслонки второй камеры; 12 — патрубок отсоса картерных газов в задроссельное пространство карбюратора; 13 — дроссельная заслонка второй камеры; 14 — выходные отверстия переходной системы второй камеры; 15 — корпус дроссельных заслонок; 16 — распылитель главной дозирующей системы второй камеры; 17 — малый диффузор; 18 — корпус топливного жиклера переходной системы второй камеры; 19 — распылитель ускорительного насоса; 20 — патрубок подачи топлива в карбюратор; 21 — распылитель эконостата; 22 — воздушная заслонка; 23 — шток пускового устройства; 24 — рычаг воздушной заслонки; 25 — крышка пускового устройства; 26 — штифт рычага 24, действующий от штока 23 пускового устройства; 27 — ось воздушной заслонки; 28 — крышка карбюратора; 29 — трубка с топливным жиклером эконостата; 30 — топливный фильтр; 31 — игольчатый клапан; 32 — эмульсионная трубка второй камеры; 33 — поплавок; 34 — главный топливный жиклер второй камеры; 35 — перепускной жиклер ускорительного насоса; 36 — рычаг привода дроссельных заслонок; 37 — рычаг привода ускорительного насоса; 38 — диафрагма ускорительного насоса; 39 — регулировочный винт качества (состава) смеси холостого хода; 40 — патрубок забора разрежения вакуумного регулятора опережения зажигания. 41 — корпус карбюраторов. 42 — электромагнитный запорный клапан; 43 — регулировочный винт добавочного воздуха заводской подрегулировки системы холостого хода; 44 — диафрагма пускового устройства.

Поплавковый карбюратор состоит из множества элементов.

  1. Поплавковая камера, которая отвечает за поддержание определенного уровня топлива.
  2. Поплавок с запорной иглой, предназначенный для автоматического дозирования уровня топлива в поплавковой камере.
  3. Смесительная камера, в которой происходит основное смешивание распыленного (мелкодисперсного) топлива и воздуха
  4. Диффузор – суженный участок, проходя через который воздушный поток ускоряет свое движение.
  5. Распылитель с жиклером, соединяющий поплавковую и смесительную камеры, через который проходит топливо прямо к диффузору.
  6. Дроссельная заслонка – регулирует поток смеси, поступающий в цилиндры.
  7. Воздушная заслонка – регулирует поток воздуха, поступающий в карбюратор. Благодаря ей можно сделать смесь «бедной», нормальной или «обогащенной». Схема зависимости мощности от количества воздуха в топливной смеси

Из схемы видно, что нормальная смесь — это когда воздуха в примерно в 15 раз больше чем топлива. При таких условиях будет полное сгорание бензина и максимальная мощность.

  • Система холостого хода – подает топливо в обход смесительной камеры, когда дроссельная заслонка полностью закрыта. По специальным каналам бензин и воздух проходят в задроссельное пространство.
  • Экономайзеры и эконостаты – устройства для дополнительной подачи топлива, когда двигатель работает на максимальных нагрузках. При этом экономайзеры имеют принудительное управление, а эконостаты работают от разрежения воздуха.
  • Подсос топлива – система принудительного обогащения топливной смеси. Потянув за рычаг, водитель приоткрывал дроссельную заслонку, в результате чего воздух интенсивней проходил через смесительную камеру и забирал большее количество топлива. Получается обогащенная смесь, удобная для запуска холодного двигателя.
  • Принцип работы карбюратора

    Посмотрев видео, ниже, Вы наглядно увидите устройство и принцип работы карбюратора на разных режимах работы. Видео хоть и старенькое, но актуальное по сей день. Не поленитесь и досмотрите до конца, если хотите полностью разобраться в теме.

    Ну а ниже подытожим — работа всех поплавковых карбюраторов осуществляется по типичной схеме.

    1. В поплавковую камеру через топливную магистраль из бака закачивается бензин на нужный уровень, который регулируется и поддерживается поплавком и запорной иглой.
    2. Распылитель, находящийся в нижней части поплавковой камеры, с помощью жиклера передает строго дозированную порцию топлива в смесительную камеру. Одновременно поток топлива распыляется для лучшего перемешивания с воздухом и сгорания.
    3. Топливо из распылителя рассеивается над диффузором, который предназначен для создания быстрого потока воздуха и лучшего его смешивания с уже распыленным бензином.
    4. Смесь топлива и воздуха поступает к дроссельной заслонке, которая напрямую связана с педалью газа. Чем больше топлива нужно двигателю, тем больше открыта заслонка и тем активней работает карбюратор.
    5. Из карбюратора топливно-воздушная смесь проходит через впускной коллектор к тому цилиндру, в котором в данный момент опускается поршень с одновременным открытием впускного клапана.
    6. Поршень работает как насос, втягивая уже приготовленную в карбюраторе смесь.

    Несмотря на довольно простой принцип работы, хорошо настроенный карбюратор обеспечивает отличную отдачу мощности двигателем, неплохую экономию топлива и надежность системы.

    Типы карбюраторов

    Предшественниками уже рассмотренного поплавкового карбюратора были мембранно-игольчатый и барботажный. Это уже устаревшие конструкции, которые сегодня и не встретишь на машинах повседневного использования (а вот на «олдкарах» эти редкости еще есть).

    Мембранно-игольчатый карбюратор состоит из нескольких камер, разделенных мембранами. Мембраны опираются на пружины заданной жесткости и соединены между собой штоком. Мембранные камеры имеют выход в камеру смешивания, а также соединены с каналом подачи топлива. Движение штока приводило в действие мембраны камер, заставляя их качать топливо в полость смешивания. Да, система несколько громоздкая и медленно реагирующая на изменение режима работы двигателя, но при этом надежная до такой степени, что устанавливалась на авиационные двигатели.

    Барботажный карбюратор – первая конструкция и первая попытка создать подобное устройство. Представлял собой глухую крышку, которая накрывала бензобак на некотором расстоянии от топлива. К крышке подводились два патрубка: один входной для воздуха, второй к двигателю. Воздух, проходя под крышкой, насыщался парами бензина и в таком виде направлялся в камеру сгорания. Это первое устройство, которое рассчитано на работу с испарениями топлива.

    Классификация других типов карбюраторов зависит от особенностей конструкции. По сечению распылителя различают устройства с постоянным разрежением (модели производства Японии с высочайшими эксплуатационными характеристиками), с постоянным сечением распылителя (карбюраторы производства СССР и РФ) и с золотниковым дросселированием (горизонтальные карбюраторы, предназначенные в основном для мототехники).

    По направлению движения готовой смеси различают конструкции с горизонтальным и вертикальным потоком (из последних самой эффективной оказалась система с нисходящим потоком).

    Поплавковые карбюраторы могут иметь одну или несколько смесительных камер. Однокамерные устройства были в ходу до 1960-х годов, пока развитие двигателей не потребовало увеличения пропускной способности карбюратора.

    Создание многокамерных карбюраторов с несколькими дроссельными заслонками позволило решить эту проблему. Появились разновидности: карбюраторы с одновременным открытием двух дроссельных заслонок, от каждой из которых питались определенные цилиндры, и карбюраторы с последовательным открытием двух заслонок, которые подключались на весь двигатель и работали в соответствии с его режимом.

    По мере того, как росла мощность двигателей, развивались и карбюраторы. Появились трех- и четырехкамерные виды, на автомобиль устанавливалось несколько карбюраторов, настраивались различные варианты приготовления топливной смеси (например, в одной камере делалась переобогащенная смесь, в двух других – обедненная).

    Преимущества и недостатки карбюраторов

    Про ужасы вечного ремонта карбюратора не слышал только глухой. А что на самом деле? Какие же плюсы у этого устройства и есть ли смысл вообще с ним иметь дело? Как ни странно прозвучит это в наш технологичный век, но карбюратор имеет несколько серьезных преимуществ.

    1. Простота конструкции. Нет, речь не о том, что это очень уж простой механизм. Но по сравнению с электронной начинкой сегодняшних автомобилей, карбюратор на порядок проще для ремонта, обслуживания и даже эксплуатации. В большинстве карбюраторов нет никакой электроники, только механические устройства, а значит, человек с «прямыми руками» может и сам заниматься его ремонтом и обслуживанием. Об этом хорошо помнит «старая гвардия» — наши родители, привыкшие копаться в своих «ненаглядных» Жигулях и Запорожцах.
    2. Ремонтопригодность. Всё, что ломается в карбюраторе, можно починить без «лишней крови». Необходимые запчасти можно купить (есть производители, до сих пор выпускающие ремкомплекты. А почему бы и нет?).
    3. При работе с некачественным топливом карбюратор оказывается гораздо живучей и стабильней, чем инжектор. И вообще, он не слишком требователен к чистоте, а если и засоряется, то подлежит простой чистке в домашних («гаражных») условиях.
    4. Небольшое количество воды, попавшее в карбюратор, не причинит ему вреда, в отличие от инжектора. Правда, со временем он потребует чистки и калибровки.
    5. И, наконец, карбюратор не требует подключения к электросети, датчикам, процессору и прочим «радостям» цивилизации. Он работает исключительно от энергии всасываемого двигателем воздуха, а значит, был оптимальным вариантом для установки на старые автомобили, где вообще не было электроники.

    Но есть и недостатки иза которых карбюраторные автомобили в конце концов сошли с мировой арены автомобилестроения.

    1. Технологии требовали систему подачи топлива с гибкой подстройкой, а не с постоянными параметрами, чтобы минимизировать потребление топлива (которое раньше никто особо не считал). Поэтому на смену карбюратору пришла инжекторная система, которая до сих пор развивается и совершенствуется.
    2. Второй значительный минус – зависимость карбюратора от погодных условий. В холодное время года внутри собирается конденсат, мешающий работе, в зимний период есть риск обледенения внутренней части. При этом летняя жара тоже не дает ему работать стабильно из-за активного испарения – начинаются сбои в подаче смеси.
    3. Ну и третий недостаток — это значительно ниже экологические показатели, по сравнению с инжектором. В современной борьбе за экологию карбюраторные автомобили просто не выдерживают никакой критики, так как вредные выбросы у них значительно выше.

    Основные неисправности карбюраторов и их причины

    Неисправности в карбюраторе отражаются на режиме работы двигателя, и именно по нему можно определить, что с системой подачи топлива не всё нормально.

    1. Тяжело запускается непрогретый двигатель – скорей всего, проблемы в регулировке дроссельной заслонки. Необходимо отрегулировать привод заслонки, чтобы при вытянутом подсосе она полностью закрывалась, либо отрегулировать пусковые зазоры.
    2. Непрогретый двигатель заводится и сразу глохнет при полностью вытянутом подсосе – проблема опять-таки в приводе дроссельной заслонки. Либо неправильно отрегулированы зазоры, либо не работает телескопическая тяга и заслонка не открывается.
    3. Прогретый двигатель сложно запускается – не отрегулирован уровень топлива в поплавковой камере, вышел из строя поплавковый механизм или клапанная игла, в результате чего уровень топлива выше нормы.
    4. Неустойчивая работа двигателя на холостых оборотах – причин может быть несколько, и основная это регулировка системы холостого хода. Другие причины – не работает привод эконостата холостого хода или не срабатывает запорный клапан, засорились жиклеры, идет подсос воздуха, ненормально работает поплавок в поплавковой камере
    5. При открытии дроссельной заслонки нет прироста мощности – слишком обогащенная или обедненная смесь из-за негерметичной фиксации распылителя ускорительного насоса.
    6. Низкая динамика разгона – недостаток топлива из-за обедненной смеси или отключения вторичной камеры.

    Заключение

    Несмотря на свою несколько громоздкую конструкцию, карбюраторы верой и правдой служат владельцам старых автомобилей. И, возможно, ремонт и чистка, которую автолюбители делают самостоятельно, обходится в разы дешевле, чем промывка форсунок, к которой вынуждены прибегать владельцы инжекторных автомобилей.

    Покупать ли машину, если на ней установлен карбюратор? Если судить по схеме работы, он далеко не самое слабое звено в автомобиле, и может долгое время вообще не тревожить никакими поломками. Так что карбюраторы, хоть и устарели, но всё еще готовы послужить тем, кто ценит простоту и надежность.

    Принцип работы карбюратора – главные проблемы и возможные неполадки

    Автор: Дмитрий Сапко

    Карбюратор – это основной элемент системы питания двигателя внутреннего сгорания, работающего на бензине. Такие двигатели использовались с самого начала автомобилестроения, но в последние годы их активно заменяют инжекторы, которые стали более экономичными и современными. Тем не менее, карбюратор стал основополагающим элементом автомобильной техники, до сих пор применяется во многих механизмах и системах, потому этот узел достоин нашего внимания. Сегодня мы поговорим об основных принципах работы простых карбюраторов и рассмотрим важные особенности его функционирования.

    Также стоит подходить к изучению карбюратора с практичной стороны и описать самые частые и досадные неполадки, которые встречаются в карбюраторных двигателях. Многие автомобилисты продолжают эксплуатировать авто с таким типом силового агрегата, потому для них важно знать причины и возможные пути решения самых частых неполадок. Рассмотрим основу конструкции и работы устройства для подачи топлива в двигатель.

    Карбюраторный двигатель – главные принципы смешивания топлива

    Узел карбюратора является основным инструментом смешивания топлива в бензиновом двигателе старого типа. В камерах этой части агрегата происходит смешивание топлива с воздухом и подача нужного количества бензиновой смеси в камеру сгорания. Сверху в карбюратор подается воздух, который проходит очистку фильтром. Кстати, воздушный фильтр часто недооценен в системе карбюраторного двигателя. Его роль достаточно велика.

    В боковой части карбюратора присутствует вход бензина. Бензин и воздух подаются в одну камеру, топливо распыляется на мелкие части, чтобы происходило смешивание бензина и воздуха. Только в таком состоянии топливо может интенсивно и эффективно сгорать, давая нужную силу двигателю. Принцип работы карбюратора выглядит следующим образом:

    • сверху в систему подается нужное количество очищенного и отфильтрованного воздуха;
    • сбоку в смесительную камеру принудительно закачивается бензин в необходимом количестве;
    • далее в камере происходит смешивание воздуха и топлива, что производит готовую смесь для работы двигателя;
    • в ходе такта работы агрегата нижняя заслонка карбюратора открывается и подает в камеры сгорания нужное количество топлива;
    • также есть дополнительная заслонка, соединенная с педалью газа, для принудительного увеличения подачи топлива;
    • заслонкой можно регулировать с помощью подсоса – принудительно увеличить интенсивность работы двигателя;
    • поплавковая камера позволяет поддерживать строго определенный уровень топлива в карбюраторе;
    • система заслонок и жиклеров работает на создание надежного функционирования всех элементов карбюратора.

    Описать работу этого узла можно и более профессионально, используя технические термины и инженерные схемы. Мы решили остановиться на простом пояснении сложных истин автомобильной техники. Тем не менее, простейший карбюратор, описанный нами выше, не является единственным вариантом смешивающей топливо техники в машинах современного типа.

    Существуют такие карбюраторы с автоматическим подсосом, устройства с разными режимами работы. Карбюраторы до сих пор активно используются в мотоциклетной сфере, а также при производстве некоторых видов спецтехники. Существует целая индустрия, для которой выполняется техническое усовершенствование этого узла и изобретение новых способов управления топливной смесью.

    Поломки и частые проблемы в работе карбюратора

    Часто гораздо интереснее устройства и принципа работы определенного автомобильного узла будет узнать о возможных неполадках и частых проблемах технической детали машины. Потому мы также опишем распространенный ряд проблем. Наиболее частые проблемы с карбюратором возникают в тех случаях, когда в камеру смешивания попадает грязное топливо или некачественно очищенный воздух. Эти проблемы являются основой поломок карбюратора.

    Поэтому в автомобили с таким типом двигателя следует постоянно следить за качеством фильтров топливной и воздушной систем. Иначе машина не сможет нормально работать, будет постоянно выдавать различные проблемы. Карбюраторные авто редко оснащаются хорошими бортовыми компьютерами, потому неполадку вы не увидите на экране системы диагностики. Самые важные показатели наличия проблем в системе следующие:

    • двигатель долго заводится, для запуска может потребоваться на один подход зажигания;
    • работает агрегат с перебоями, присутствует плавание или плохой набор оборотов;
    • повышается потребление топлива, порой рост расхода возможен на 30% и даже более;
    • снижается интенсивность работы двигателя, уходит часть мощности, разгон становится долгим;
    • двигатель троит, внутри могут быть слышны периодичные мелкие взрывы;
    • звук работы силового агрегата слишком сухой или изменился в иных вариантах;
    • из выхлопной трубы идет обильный дым, который может проходить после прогрева машины.

    Это лишь некоторые показатели возможных неполадок вашего силового агрегата. Стоит помнить о том, что качественная работа двигателя с карбюраторной подачей топлива возможна только в том случае, если все детали функционируют в нормальном режиме. Необходимо следить за всеми особенностями работы двигателя, замечать любые, даже самые незначительные неполадки.

    В случае с карбюраторным механизмом неполадки развиваются достаточно долго. Расход может расти постепенно и не тревожить вас резкими изменениями стоимости поездки. Потому нужно внимательно следить за качеством работы двигателя, вовремя обслуживать автомобиль и постоянно менять фильтры топлива и воздуха. Только с такими особенностями вы сможете получить необходимую длительную и удачную работу двигателя. Предлагаем подробное видео о карбюраторе и системах его работы:

    Подводим итоги

    Карбюраторная система подачи топлива имеет ряде преимуществ перед инжектором, но она уже устарела и используется только в некоторых вариантах техники. Сегодня большинство автомобилей и другой современной техники используют прямую подачу топлива и воздуха в камеру сгорания без предварительного смешивания. Тем не менее, карбюратор является более надежным типом оборудования, который способен работать в более сложных условиях.

    Ранее перед доступом к двигателю бензин и воздух проходили ряд очистительных процессов и смешивались безопасно в камере карбюратора. Сегодня же ресурсы попадают в агрегат напрямую, чем могут привести к определенным проблемам с двигателем. Тем не менее, инжектор также обладает рядом важных преимуществ. Расход топлива на таких двигателях ниже, а срок службы системы подачи топлива при хорошем качестве бензина велик. Как вы относитесь к автомобилям с карбюраторными бензиновыми двигателями?

    Карбюратор: устройство и принцип работы

    Обязательной узел системы питания ДВС ХХ века

    На автомобилях конца ХХ — начала ХХI веков на смену карбюраторам пришли инжекторные системы подачи топлива. Эти системы впрыска с микропроцессорным управлением способны в течении сотен тысяч километров пробега обеспечивать более точную, в сравнении с карбюратором, дозировку топлива во всех режимах работы мотора. А также сохранять параметры выхлопа двигателя в рамках актуальных экологических требований. Однако карбюраторы продолжают использоваться на мототехнике; различных вспомогательных, стационарных, генераторных, лодочных двигателях; на бензоинструменте (бензопила, газонокосилка и т.п.) Всё об устройстве, видах, принципе работы карбюраторов – в данной публикации.

    Слово «карбюратор» имеет французское происхождение и произошло от слова carburation – смешивание. В этом и состоит предназначение данного ключевого узла системы питания двигателя внутреннего сгорания – в смешивании бензина с воздухом и подаче определённого количества данной смеси в рабочие полости цилиндров. Карбюратор – это механическое смешивающее и дозирующее устройство для ДВС. На смеси мельчайших капель горючего с воздухом, которую он образует и впрыскивает в цилиндры, и работает мотор.

    Немного истории. Прежние типы карбюраторов

    Как только изобретатели второй половины XIX века начали пытаться оснастить технику двигателями, работающими на бензине и керосине, им пришлось учитывать, что воспламеняется это топливо только при участии воздуха. Более того, для эффективной работы двигателя надо ещё и смешать воздух с горючим в определённой пропорции.

    Первый карбюратор изобрёл в 1876 году итальянец Луиджи Христофорис. В его устройстве топливо разогревалось, испарялось, и его пары смешивались с воздухом. Через год Даймлер и Майбах нашли более рациональное решение, применив принцип распыления топлива. Этот простой и эффективный принцип и лёг в основу всех последующих разработок.

    Готлиб Даймлер на машине с личным шофёром.

    До повсеместного распространения карбюраторов поплавкового типа применялось ещё два вида данных устройств: барботажные и мембранно-игольчатые карбюраторы.

    Барботажные карбюраторы представляли собой бензобаки, внутри которых на небольшом расстоянии от поверхности топлива имелась глухая доска и два широких патрубка – один подаёт из атмосферы, и второй – отбирает топливно-воздушную смесь в двигатель. Воздух проходит под доской, над поверхностью горючего, насыщается его парами, и получается горючая смесь.

    Это примитивная, но действенная конструкция. Дроссельная заслонка располагалась на моторе отдельно. Работа двигателя с барботажным карбюратором зависела от погоды на улице: степень испаряемости топлива изменялась, в зависимости от температуры окружающей среды. Часть топливно-воздушной смеси могла конденсироваться. Вся конструкция была довольно взрывоопасной и сложной в регулировании.

    Мембранно-игольчатый карбюратор – это уже отдельное от бензобака законченное устройство. Оно состоит из нескольких камер, которые разделены мембранами и жёстко связаны между собой штоком.На этом штоке закреплена игла, запирающая седло клапана подачи топлива. Камеры соединены каналами со смесительной полостью, с одной стороны, и с топливным каналом – с другой.

    Характеристики такого карбюратора определяются тарированными пружинами, на которые опираются мембраны. Это уже не примитивная, но достаточно простая конструкция, достоинством которой, кроме её простоты, является способность безотказно работать в любом положении и любых условиях. Такие карбюраторы стояли в первой половине ХХ века не только на автомобилях и мотоциклах, но и на самолётах с поршневыми двигателями внутреннего сгорания.

    Третий тип карбюраторов, который и стал в итоге основным во всём мировом автомобилестроении – это поплавковый карбюратор с жиклёрами. Поплавковый карбюратор, конструкция которого регулярно подвергалась усовершенствованиям, завоевал в итоге всеобщую популярность во всём мире. Он являлся очень универсальными устройством и мог быть установлен при помощи переходника на самые разнообразные модели автомобилей и мотоциклов.Его устройство и будет рассмотрено в следующих разделах этой публикации.

    Эти карбюраторы, последнего поколения данных устройств, ставились на автомобили «Ниссан» на рубеже 80-х и 90-х годов. Их сложность заключается в большом количестве вспомогательных устройств, отвечающих за стабилизацию работы карбюратора в различных режимах (резкий сброс газа, режим холостого хода в процессе простоя на автомобиле с автоматической КПП, выравнивание и стабилизацию оборотов мотора при запуске климатической установки, и т.п.). Соответственно, такой, «доведённый до совершенства» карбюратор был дополнен многочисленными вспомогательными устройствами: клапанами, биметаллическими пружинами, обогревателями и т.д.

    Инжекторные системы впрыска были изобретены уже давно, но вначале они стоили дорого для массового автопроизводства. А вот появление и повсеместное внедрение в автоиндустрии доступных по цене микропроцессоров в итоге привело к тому, что необходимость в карбюраторе, даже в самом сложном, с электромагнитными клапанами и дополнительными устройствами, попросту исчезла. Все функции отдельных элементов карбюратора стал выполнять один-единственный электронный блок управления (ЭБУ), а в конструкции инжектора были найдены простые устройства исполнения.

    Устройство поплавкового карбюратора

    Поплавковый карбюратор обеспечивает наиболее стабильные параметры топливно-воздушной смеси на выходе и обладает самыми высокими эксплуатационными качествами, по сравнению с предыдущими типами этих устройств. Кстати, ошибочным является утверждение о том, что инжектор однозначно экономичнее карбюратора. Хорошо настроенный поплавковый карбюратор обеспечивает схожие с инжектором показатели расхода горючего, однако, разумеется, он не настолько стабилен в работе.

    Состоит поплавковый карбюратор из следующих основных элементов: поплавковая камера; поплавок; запорная игла поплавка, жиклёр; смесительная камера; распылитель; смесительная камера с диффузором – трубкой Вентури; дроссельная заслонка. В поплавковую камеру по специальной магистрали из бензобака подаётся топливо. Регулирование количества этого поданного бензина производится в камере при помощи двух взаимосвязанных элементов. Это поплавок и игла.

    Принцип работы поплавкового карбюратора

    Когда уровень горючего, по мере его расходования, в поплавковой камере снижается, то и поплавок опускается вместе с иглой. Эта опустившаяся игла открывает доступ для подачи в камеру следующей порции топлива. Когда же камера заполняется бензином на должный уровень, поплавок поднимается, а игла при этом одновременно перекрывает горючему доступ. Так этот поплавковый клапан поддерживает постоянный уровень бензина в рабочей полости.

    В поплавковой камере карбюратора имеется специальное балансировочное отверстие. Благодаря ему в поплавковой камере поддерживается атмосферное давление. Практически во всех серийно выпускаемых карбюраторах, работающих с воздушными фильтрами, вместо роль данного отверстия выполняет балансировочный канал поплавковой камеры, который ведёт не в атмосферу, а в полость воздушного фильтра,либо в верхнюю часть смесительной камеры. При таком решении дросселирующее влияние фильтра отражается равномерно на всей газодинамике карбюратора, который становится балансированным.

    Следующий ключевой элемент карбюратора – жиклёр – располагается внизу поплавковой камеры. Жиклёр работает в качестве калибратора, обеспечивая дозированную подачу топлива. Сквозь жиклёр горючее попадает в распылитель. Так происходит перемещение нужного количества горючего из поплавковой камеры в смесительную камеру. В смесительной камере происходит процесс приготовления рабочей топливно-воздушной смеси.

    В смесительной камере расположены диффузор – трубка Вентури и впускной трубопровод, который распределит приготовленную топливную смесь по цилиндрам. Распылитель находится в самой узкой части диффузора, где скорость потока достигает максимума, а давление уменьшается до минимума. Под воздействием разности давлений бензин выбрасывается из распылителя, дробится и распыляется в струе воздуха, и, при перемешивании с ним, образует горючую топливно-воздушную смесь.

    В последующем вместо одиночного диффузора в карбюраторах был использован двойной. Этот дополнительный диффузор имеет малые размеры и располагается концентрически в главном диффузоре. Вместо жидкого топлива в карбюраторах современной конструкции в распылитель подаётся не гомогенное жидкое топливо, а эмульсия из бензина и воздуха. При такой конструкции достигается более качественное распыление горючего.

    Количество топливно-воздушной смеси, которая поступает для сгорания в цилиндры двигателя, регулируется дроссельной заслонкой.У горизонтальный карбюраторов вместо поворотной заслонки применён шибер – золотник.

    Поплавковая камера

    Одним из важнейших факторов эффективной работы карбюратора является уровень топлива в поплавковой камере. От правильного уровня горючего зависит устойчивая работа двигателя на холостом ходу и на малых оборотах. Поскольку регулировка системы холостого хода фактически определяет правильную компенсацию состава ГДС, то от стабильности уровня топлива косвенно зависит работа и на всех прочих режимах.

    Значение уровня бензина в камере заложена таким образом, чтобы при любых отклонениях устройства от вертикального положения не происходило бы самопроизвольного изливания горючего из распылителей в смесительную камеру. Для дополнительной компенсации приливно-отливных явлений, в более совершенных карбюраторах были предусмотрены дополнительные экономайзеры, а также спараллеленные поплавковые камеры, выполненные по бокам карбюратора и соединённые между собой поперечным каналом или специальной сообщающейся полостью. Поплавки в разных карбюраторах делали спаянными из штампованных латунных половинок, либо изготовленными из пластмассы.

    Смесительная камера. Дозирующие системы, экономайзеры, эконстаты

    Смесительная камера обеспечивает смешивание мельчайших капель бензина, этого «тумана», в проходящий воздушный поток. Эту функцию выполняет диффузор – специально суженый участок камеры. Благодаря данному диффузору воздух, проходящий сквозь него, значительно ускоряется.Движение воздуха при ускорении в диффузоре обеспечивает образование разрежения в распылительной трубке. Из-за этого бензин постоянно добавляется и подмешивается в проходящий поток.

    Двигатель в ходе эксплуатации работает в различных режимах. Поэтому и топливно-воздушные смеси требуются разного состава, в том числе и с резким изменением содержания фракций бензиновых паров. Для приготовления смеси разных концентраций, оптимальных при разном режиме работы мотора, «продвинутые» карбюраторы снабжены дозирующими устройствами. Они вступают в работу, либо отключаются в разное время, либо работают одновременно, обеспечивая наиболее оптимальный для получения наилучшего сочетания мощности и экономичности состав смеси на всех режимах двигателя. Эти дозирующие системы основаны на пневматической компенсации состава топливно-воздушной смеси.

    Экономайзеры и эконостаты являются дополнительными параллельными системами подачи топлива в смесительную камеру. Они обогащают топливно-воздушную смесь только при высоких уровнях вакуума (т.е. при близких к максимальным нагрузках), когда экономично сформированная смесь не может обеспечить потребностей двигателя. Экономайзеры снабжены принудительным управлением, пневматического или механического вида.

    Эконостаты представляют собою просто трубки определённого сечения, в некоторых случаях – с эмульсионными каналами, выведенные в пространство смесительной камеры выше диффузора – в зону появления вакуума при максимальных нагрузках.

    Система холостого хода

    Система холостого хода, которой снабжались карбюраторы последних поколений, призвана обеспечивать устойчивую работу мотора на малых оборотах, когда дроссельная заслонка полностью закрыта. Это отдельные каналы, по которым воздух и бензин подаются под дроссельную заслонку. Смесительная камера в этом случае вовсе не задействуется, так как система холостого хода подаёт необходимое количество топливно-воздушной смеси во впускной коллектор в обход её.

    Механический «подсос» топлива

    Не насыщенность, а просто количество рабочей топливно-воздушной смеси, которое поступает в цилиндры двигателя, зависит от положения дроссельной заслонки. Эта заслонка напрямую связана с педалью газа в кабине. Знатокам старой ВАЗовской «классики» знакомо также ещё одно устройство для управления дроссельной заслонкой. Это «подсос» для холодного запуска мотора – рычаг механического «подсоса» топлива, в нижней части приборной панели. Если вытянуть «подсос» на себя, то заслонка прикрывается.

    Тем самым ограничивается доступ воздуха и увеличивается уровень разрежения в смесительной камере карбюратора. Бензин из поплавковой камеры при повышенном разрежении вытягивается в смесительную камеру гораздо интенсивнее, а недостаточное количество поступившего воздуха делает возможным приготовление для мотора обогащенной рабочей смеси, более подходящей для запуска холодного двигателя.

    Классификация карбюраторов

    • По направлению потока топливно-воздушной смеси – на вертикальные и горизонтальные.
    • По способу регулировки сечения распылителя и образования разрежения – с постоянным разрежением (наиболее новые и прогрессивные карбюраторы европейского и японского производства); с постоянным сечением распылителя – все серийные карбюраторы до последних поколений этих устройств, в том числе и все массово выпускаемые в СССР; с золотниковым дросселированием – по большей части, горизонтальные карбюраторы для мотоциклов, в которых вместо дроссельной заслонки количество подаваемой смеси регулирует шибер-золотник.
    • По количеству смесительных камер – на однокамерные и многокамерные. «Сдвоенные» карбюраторы есть смысл использовать, например, на моторах, где цилиндры достаточно далеко расположены друг от друга. Тогда каждая половина впрыскивает топливно-воздушную смесь только в «свои» цилиндры. Кроме «спараллеленных» двух- и четырёхкамерных карбюраторов, существовали также серийные трёхкамерные карбюраторы (например, «К-156» для 3102-й «Волги»). Параллельно работающими здесь были 1-я и 3-я смесительные камеры, они подавали смесь в 2-ю – «форкамеру».

    Преимущества и недостатки использования карбюраторов

    К достоинствам карбюраторов следует отнести высокую гомогенность смеси на выходе; низкую стоимость и технологическую доступность при производстве;сравнительную простоту при обслуживании и ремонте, ремонтопригодность без необходимости специального оборудования. В отличие от инжектора, который требует электрического питания, работа карбюратора происходит исключительно за счёт энергии потока воздуха, всасываемого двигателем.

    Основной же причиной вытеснения карбюратора из автомобильной системы питания стала невозможность обеспечить топливно-воздушную смесь индивидуального состава для каждой из вспышек. А инжекторная система с распределённым впрыском действует именно таким образом, стабильно обеспечивая экономичность и экологичность работы двигателя.

    Устройство карбюратора простыми словами (на прим. Солекс)

    Осторожно, длиннопост :) Много букф и много картинок.

    Это преамбула ко второй части рассказа о том, как с карбюраторной системой на Audi 100 2.3 можно добиться практически схожих динамических характеристик родной системы впрыска.

    Наверное, проще чем карбюратор, системы подачи топлива в природе просто нет, и учитывая это, наверняка найдутся люди, которым он еще кажется темной лошадкой. И прежде чем приступить к публикации моей второй части, хотелось бы рассказать максимально простым языком как работают все основные системы.

    Аналогичным образом устроены и работают практически все карбюраторы, есть только небольшие различия в конструкциях. В этом посте я расскажу на примере карб. солекс, обладающим наиболее простой конструкцией.

    Солекс — семейство карбюраторов имеющих практически одинаковую конструкцию всех систем, но отличающихся параметрами дозирующих элементов, а также некоторыми конструктивными особенностями.

    Солексы в основном ставились на ВАЗ2108/09/099, ВАЗ-классику, Нивы-Тайги и некоторые другие.

    Как и абсолютное большинство карбюраторов, он имеет 2 камеры, принцип работы которых установлен в соотношении 70 на 30. Грубо говоря, 70 процентов нажатия педали — двигатель работает только на первой камере, и при нажатии педали более чем на 70% — открывается вторая камера. У карба есть несколько систем, отвечающих за работу на разных режимах работы двигателя.

    ОСНОВА НОМЕР ОДИН! Главный принцип. Бедная и богатая смесь.

    Для полного сгорания 1 кг топлива требуется 15 кг воздуха.
    Топливовоздушная смесь в такой пропорции называется нормальной. Режим работы двигателя на этой смеси имеет удовлетворительные показатели по экономичности и развиваемой мощности.

    Незначительное увеличение количества воздуха в топливовоздушной смеси по сравнению с его нормальным содержанием (но не более 17 кг) приводит к обеднению смеси. На обедненной смеси двигатель работает в наиболее экономичном режиме, т.е. расход топлива на единицу развиваемой мощности минимален. Полную мощность на такой смеси двигатель не разовьет.

    При избытке воздуха (17 кг и более) образуется бедная смесь. Двигатель на такой смеси работает неустойчиво, при этом расход топлива на единицу вырабатываемой мощности возрастает. На переобедненной смеси, содержащей более 19 кг воздуха на 1 кг топлива, работа двигателя невозможна, так как смесь не воспламеняется от искры.

    Небольшой недостаток воздуха в топливовоздушной смеси по сравнению с нормальным (от 15 до 13 кг) способствует образованию обогащенной смеси. Такая смесь позволяет двигателю развивать максимальную мощность при несколько повышенном расходе топлива.

    Если воздуха в смеси меньше 13 кг на 1 кг топлива, смесь богатая. Из-за недостатка кислорода топливо сгорает не полностью. Двигатель на богатой смеси работает в неэкономичном режиме, с перебоями и при этом не развивает полной мощности. Переобогащенная смесь, содержащая менее 5 кг воздуха на 1 кг топлива, не воспламеняется — работа двигателя на ней невозможна.

    Теперь перейдем к системам:

    ПОПЛАВКОВАЯ КАМЕРА
    Все просто.
    Принцип унитазного бачка и думаю рассказывать о том, как работает бачок унитаза нет смысла. Главная цель — поддерживать заданный уровень топлива. Исполнительные механизмы — поплавки и затыкающая игла.

    СИСТЕМА ХОЛОСТОГО ХОДА (ХХ) / ЭКОНОМАЙЗЕР ПРИНУДИТЕЛЬНОГО ХОЛОСТОГО ХОДА (ЭПХХ)
    И на солексе система ХХ осложнена наличием электромагнитного клапана. Электромагнитный клапан иглой затыкает подачу топлива через жиклер ХХ в двух случаях:
    1. Если выключено зажигание.
    2. Если педаль газа отпущена, а на тахометре больше 1900 об/мин. Экономим бензин при спуске с горы, например.

    Но на практике проблем от этой фигни больше, чем пользы. Поэтому если пропал холостой ход на солексе — 90% вероятность, что дело именно в этом. Жиклер ХХ имеет привычку забиваться какой-нибудь хренью, холостой ход при этом, естественно, пропадает. Но вся проблема решается за пару минут.

    Можно просто откусить иглу кусачками, и тогда система ХХ превращается в принудительную. Кроме незначительно увеличившегося расхода топлива больше последствий не будет.

    ГЛАВНАЯ ДОЗИРУЮЩАЯ СИСТЕМА (ГДС)
    Она же самая сложная для быстрого понимания. Задача главной дозирующей системы — приготовить рабочую смесь для нормальной работы двигателя на основном режиме работы.

    Главная дозирующая система состоит из топливных жиклеров первичной и вторичной камер карбюратора, воздушных жиклеров и эмульсионных трубок, трубок “вентури”, предназначенных для смешивания топлива с воздухом и приготовления рабочей смеси для нормальной работы двигателя.

    Готовая смесь распыляется в СМЕСИТЕЛЬНОЙ камере.

    Карбюратор: конструкция и принцип работы

    До середины 80-х бензиновые двигатели внутреннего сгорания на легковых и легких грузовых автомобилях массово оснащались карбюраторами. Такие двигатели работают по принципу сгорания заранее приготовленной внешним устройством топливно-воздушной смеси в цилиндрах мотора. Указанная рабочая смесь состоит из капель горючего и воздуха. Карбюратор отвечает за процесс, подразумевающий образование смеси из этих компонентов в нужной пропорции для максимальной эффективности работы ДВС. Простейший карбюратор представляет собой механическое дозирующее устройство.

    Немного истории

    Ранние разработки на заре эпохи двигателестроения использовали в качестве горючего светильный газ. Карбюратор таким двигателям на раннем этапе был попросту не нужен. Светильный газ поступал в цилиндры благодаря разрежению, которое образовывалось в процессе работы двигателя. Главной проблемой такого горючего являлась его высокая стоимость и ряд сложностей в процессе использования.

    Вторая половина XIX века стала тем периодом, когда изобретатели, инженеры и механики во всем мире старались заменить дорогой светильный газ более экономичным, дешевым и доступным видом горючего для двигателя внутреннего сгорания. Лучшим решением стало использование привычного для нас сегодня жидкого топлива.

    Стоит учесть, что такое топливо не может воспламениться без участия воздуха. Для приготовления смеси из воздуха и топлива потребовалось дополнительное устройство. Мало того, но смешивать воздух с горючим необходимо было еще и в нужных пропорциях.

    Для решения этой задачи изобрели первый карбюратор. Устройство увидело свет в 1876 году. Создателем ранней модели карбюратора стал итальянский изобретатель Луиджи Де Христофорис. По своей конструкции и принципу работы первый карбюратор имел ряд существенных отличий от более современных аналогов. Для получения качественной топливно-воздушной смеси горючее в первом устройстве нагревалось, а его пары смешивались с воздухом. По ряду причин этот способ образования рабочей смеси не получил широкого распространения.

    Разработки в данной области продолжились, а уже через год талантливые инженеры Готлиб Даймлер и Вильгельм Майбах создали конструкцию двигателя внутреннего сгорания, который имел карбюратор, работающий по принципу распыления топлива. Это устройство легло в основу для всех последующих разработок.

    Модернизация

    Главным направлением дальнейшей работы инженеров стала максимальная автоматизация всех процессов смесеобразования. Над совершенствованием конструкции карбюратора трудились лучшие умы многих компаний по производству автомобилей и сопутствующего оборудования. По этой причине можно встретить великое множество простых и сложных моделей карбюраторов от многочисленных мировых производителей.

    Дальнейшее развитие

    Карбюраторы стали активно вытесняться инжекторными системами только в конце XX века. До этого времени конструкцию карбюратора усиленно совершенствовали. Последними витками эволюции карбюраторного впрыска стали карбюраторы под контролем электроники. В таких карбюраторах имелось несколько электромагнитных клапанов, работу которых контролировало специальное устройство управления. Для примера можно упомянуть марку карбюратора Hitachi. В конструкции насчитывалось без малого 5 клапанов, а заслонки управлялись электронным способом.

    Последнее поколение конструктивно сложных карбюраторов отлично демонстрирует уже упомянутая модель карбюратора Hitachi. Этот карбюратор устанавливался на автомобили марки Nissan в самом конце 80-х и в начале 90-х годов. Сложность этого поколения карбюраторов заключается в большом количестве вспомогательных устройств, особенно если сравнивать продукт Hitachi с примитивным «Солекс», который ставился на ВАЗ.

    Вспомогательные устройства отвечали за стабилизацию работы карбюратора в различных режимах. К таким режимам и особенностям эксплуатации можно отнести резкий сброс газа, режим холостого хода в процессе простоя на автомобиле с автоматической КПП, выравнивание и стабилизацию оборотов силового агрегата после включении климатической установки, а также многие другие.

    Доведенный до совершенства карбюратор последних поколений базово состоял из многочисленных устройств. Мы назовем только некоторые из них для ознакомления:

    1. Система регулирования температуры наружного воздуха;.
    2. Обогреватель впускного коллектора;
    3. Клапан прекращения подачи топлива;
    4. Клапан устройства обогащения смеси;
    5. Биметаллическая пружина воздушной заслонки в устройстве механизма открытия дросселя;
    6. Система быстрого холостого хода и т.д;

    Такие устройства относятся к последним «электронным» карбюраторам. Дополнительные элементы в этих моделях были выполнены в виде отдельных аналоговых устройств. Устройства управлялись простейшей электроникой или работали по принципу саморегулирования (биметаллическая пружина).

    Карбюратор и инжектор

    Далее в истории систем топливоподачи и смесеобразования сначала появился моновпрыск (моноинжектор), а полностью электронный впрыск и производительные топливные форсунки окончательно вытеснили морально устаревшие карбюраторы.

    Главным преимуществом инжектора является намного более точное и своевременное дозирование топлива для получения нужных пропорций топливно-воздушной смеси. Появление и внедрение в автоиндустрию доступных по цене микропроцессоров в итоге привело к тому, что необходимость в сложном карбюраторе и дополнительных устройствах в его конструкции попросту исчезла. Все функции отдельных элементов карбюратора взял на себя один единственный блок управления (ЭБУ), а в конструкции инжектора установили простые устройства исполнения.

    Сегодня карбюраторный впрыск встречается только на тех двигателях, основным назначением которых является целевая установка на спецтехнику. Причиной такого решения стала уязвимость электронных инжекторных систем во время тяжелых условий эксплуатации. Электронные узлы и модули инжектора страдают от повышенной влажности и загрязненности, а форсунки чувствительны к качеству топлива. Для примера стоит сказать, что однозначно лучше установить на транспортное спецсредство при использовании такового на болотах именно механический карбюратор, который не перегорит. Такой карбюратор всегда можно с легкостью обслужить, почистить и просушить при необходимости.

    Виды карбюраторов

    Как мы уже говорили, процесс модернизации карбюраторов породил большое количество видов данного устройства от разных производителей. Все это многообразие карбюраторов условно можно разделить на три группы:

    • барботажный;
    • мембранно-игольчатый;
    • поплавковый;

    Два первых типа карбюраторов уже давно практически не встречаются, так что останавливаться на этих конструкциях мы не будем. Целесообразнее рассмотреть поплавковый карбюратор, который еще можно увидеть в различных модификациях на гражданских автомобилях эпохи 90-х в наши дни.

    Устройство поплавкового карбюратора

    Главной задачей карбюратора является смешение топлива и воздуха. Разные модели карбюраторов осуществляют этот процесс по схожему принципу. Поплавковый карбюратор состоит из следующих элементов:

    • поплавковая камера;
    • поплавок;
    • запорная игла поплавка,
    • жиклер;
    • смесительная камера;
    • распылитель;
    • трубка Вентури;
    • дроссельная заслонка;

    Поплавковый карбюратор устроен так, что к его поплавковой камере подведена специальная магистраль. По этой магистрали из топливного бака в карбюратор подается топливо. Регулирование количества топлива в камере осуществляется посредством двух элементов, которые взаимосвязаны. Речь идет о поплавке и игле. Падение уровня топлива в поплавковой камере означает, что и поплавок опустится вместе с иглой. Таким образом получится, что опустившаяся игла откроет доступ для проникновения в камеру следующей порции горючего. При заполнении камеры бензином поплавок поднимется, а игла при этом параллельно перекроет горючему доступ.

    В нижней части поплавковой камеры находится следующий элемент под названием жиклер. Жиклер выполняет функцию калибратора и обеспечивает дозирование подачи горючего. Через жиклер топливо попадает в распылитель. Так происходит перемещение нужного количества горючего из поплавковой камеры в смесительную камеру. В смесительной камере происходит процесс приготовления рабочей топливно-воздушной смеси.

    Конструктивно смесительная камера имеет диффузор. Указанный элемент создан для того, чтобы увеличивать скорость воздушного потока. Диффузор отвечает за создание разрежения воздуха в непосредственной близости от распылителя. Это помогает вытягивать топливо из поплавковой камеры, а также способствует лучшему его распылению в смесительной камере. Таково базовое устройство простого поплавкового карбюратора.

    Дроссельная заслонка : холодный пуск и холостой ход

    То количество рабочей топливно-воздушной смеси, которое поступит в цилиндры двигателя, будет зависеть от положения дроссельной заслонки. Заслонка имеет прямую связь с педалью газа. Но это еще не все.

    Некоторые автомобили с карбюратором имели дополнительное устройство для управления дроссельной заслонкой. Этот элемент хорошо знаком любителям старой «классики» от ВАЗ. В народе это устройство автомобилисты прозвали «подсос», а само устройство создано для холодного запуска. Элемент выполнен в виде специального рычага, который находится в нижней части торпедо со стороны водителя.

    Рычаг позволяет дополнительно управлять дроссельной заслонкой. Если вытянуть «подсос» на себя, в таком случае заслонка прикрывается. Это позволяет ограничить доступ воздуха и увеличить уровень разрежения в смесительной камере карбюратора.

    Бензин из поплавковой камеры при повышенном разрежении вытягивается в смесительную камеру намного интенсивнее, а недостаточное количество поступившего воздуха заставляет карбюратор готовить для двигателя обогащенную рабочую смесь. Именно такая смесь лучше всего подходит для уверенного запуска холодного мотора.

    Работа карбюраторного двигателя в режиме холостого хода осуществляется следующим образом:

    • карбюратор оборудован специальными дополнительными воздушными жиклерами. Эти жиклеры отвечают за подачу строго дозированного количества воздуха;
    • воздух проходит под дроссельной заслонкой и далее по рабочему алгоритму смешивается с бензином. При этом весь процесс происходит тогда, когда педаль газа не выжата и отпущена;

    Вот так и выглядит базовое устройство и принцип работы карбюратора поплавкового типа.

    Сильные и слабые стороны устройства

    Главным достоинством карбюратора является его доступная по цене ремонтопригодность. В свободной продаже по сей день существуют специальные ремонтные комплекты, которые позволяют вернуть карбюратор в строй достаточно быстро. Для ремонта карбюратора не требуется арсенал какого-либо специального оборудования, а отремонтировать устройство при наличии определенных умений и навыков под силу практически любому автомобилисту.

    Механический карбюратор не так сильно боится загрязнений и воды, так как их попадание не может окончательно вывести его из строя. В этом одновременно кроется как сильная, так и слабая сторона устройства. Карбюратор нужно достаточно часто подстраивать и обязательно чистить по сравнению с инжекторным впрыском, но он выносливее электронных решений при возникновении ряда таких условий, которые относятся к тяжелым или даже экстремальным условиям эксплуатации.

    К дополнительным плюсам карбюратора относят его меньшую чувствительность к топливу низкого качества, а процесс чистки не представляется сложным. Хотя карбюратор и является относительно сложным устройством, но диагностировать неисправности и обслуживать его определенно проще сравнительно с забитой или неисправной инжекторной системой.

    Последним аргументом против карбюратора является повышенная токсичность выхлопа, что и привело к отказу от его использования на современных авто по всему миру. Сегодня карбюратор оправданно считается безнадежно устаревшим «классическим» решением.

    Особенности регулировки карбюратора Солекс. Как выставить уровень топлива в поплавковой камере, настроить холостой ход, подобрать жиклеры, убрать провалы.

    Чистка карбюратора: когда необходимо чистить дозирующее устройство, признаки и симптомы. Доступные способы очистки карбюратора без разбора и снятия с авто.

    Доработка и модернизация карбюратора. Основные недостатки системы карбюраторного впрыска и способы их устранения, настройка. Тюнинг впускного коллектора.

    Главная дозирующая система, переходная система во вторичной камере, разновидности систем холостого хода. Ускорительный насос, экономайзер и холодный пуск.

    Основные причины, кторые приводят к обеднению рабочей смеси. Бедная смесь на карбюраторных и инжекторных ДВС, а также на моторах с ГБО. Диагностика, ремонт.

    Различные виды доступных средств и составов для прочистки карбюратора, преимущества и недостатки. Как правильно чистить карбюратор, какой очиститель лучше.

    Назначение, устройство и виды подвесок автомобиля

    Подвеска автомобиля представляет собой совокупность элементов, обеспечивающих упругую связь между кузовом (рамой) и колесами (мостами) автомобиля. Главным образом подвеска предназначена для снижения интенсивности вибрации и динамических нагрузок (ударов, толчков), действующих на человека, перевозимый груз или элементы конструкции автомобиля при его движении по неровной дороге. В то же время она должна обеспечивать постоянный контакт колеса с дорожной поверхностью и эффективно передавать ведущее усилие и тормозную силу без отклонения колес от соответствующего положения. Правильная работа подвески делает управление автомобилем комфортным и безопасным. Несмотря на кажущуюся простоту, подвеска является одной из важнейших систем современного автомобиля и за историю своего существования претерпела значительные изменения и усовершенствования.

    1. История появления
    2. Основные функции и характеристики подвески автомобиля
    3. Устройство подвески
    4. Классификация подвесок
    5. Зависимая подвеска
    6. Независимая подвеска
    7. Виды независимых подвесок
    8. МакФерсон
    9. Двухрычажная передняя подвеска
    10. Пневматическая подвеска
    11. Гидравлическая подвеска
    12. Спортивные независимые подвески
    13. Подвески типа push-rod и pull-rod

    История появления

    Попытки сделать передвижение транспортного средства мягче и комфортнее предпринимались еще в каретах. Изначально оси колес жестко крепились к корпусу, и каждая неровность дороги передавалась сидящим внутри пассажирам. Повысить уровень комфорта могли лишь мягкие подушки на сиденьях.

    Зависимая подвеска с поперечным расположением рессоры

    Первым способом создать упругую “прослойку” между колесами и кузовом кареты стало применение эллиптических рессор. Позже данное решение было позаимствовано и для автомобиля. Однако рессора уже стала полуэллиптической и могла устанавливаться поперечно. Автомобиль с такой подвеской плохо управлялся даже на небольшой скорости. Поэтому вскоре рессоры стали устанавливать продольно на каждое колесо.

    Развитие автомобилестроения повлекло и эволюцию подвески. В настоящее время насчитываются десятки их разновидностей.

    Основные функции и характеристики подвески автомобиля

    У каждой подвески существуют свои особенности и рабочие качества, которые напрямую влияют на управляемость, комфорт и безопасность пассажиров. Однако любая подвеска вне зависимости от своего типа должна выполнять следующие функции:

    1. Поглощение ударов и толчков со стороны дороги для снижения нагрузок на кузов и повышения комфорта движения.
    2. Стабилизация автомобиля во время движения за счет обеспечения постоянного контакта шины колеса с дорожным покрытием и ограничения чрезмерных кренов кузова.
    3. Сохранение заданной геометрии перемещения и положения колес для сохранения точности рулевого управления во время движения и торможения.

    Дрифт-кар с жесткой подвеской

    Жесткая подвеска автомобиля подходит для динамичной езды, при которой требуется мгновенная и точная реакция на действия водителя. Она обеспечивает небольшой дорожный просвет, максимальную устойчивость, сопротивляемость крену и раскачиванию кузова. Применяется в основном на спортивных автомобилях.

    Автомобиль класса “Люкс” с энергоемкой подвеской

    В большинстве легковых авто применяется мягкая подвеска. Она максимально сглаживает неровности, однако делает автомобиль несколько валким и хуже управляемым. Если требуется регулируемая жесткость, на автомобиль монтируется винтовая подвеска. Она представляет собой стойки-амортизаторы с изменяемой силой натяжения пружины.

    Внедорожник с длинноходной подвеской

    Ход подвески – расстояние от крайнего верхнего положения колеса при сжатии до крайнего нижнего при вывешивании колес. Ход подвески во многом определяет “внедорожные” возможности автомобиля. Чем больше его величина, тем большее препятствие можно преодолеть без удара об ограничитель или без провисания ведущих колес.

    Устройство подвески

    Любая подвеска автомобиля состоит из следующих основных элементов:

    1. Упругое устройство – воспринимает нагрузки от неровностей дорожной поверхности. Виды: пружины, рессоры, торсионы, пневмоэлементы и т.д.
    2. Демпфирующее устройство – гасит колебания кузова при проезде через неровности. Виды: все типы амортизаторов.
    3. Направляющее устройствообеспечивает заданное перемещение колеса относительно кузова. Виды: рычаги, поперечные и реактивные тяги, рессоры. Для изменения направления воздействия на демпфирующий элемент в спортивных подвесках pull-rod и push-rod применяются рокеры.
    4. Стабилизатор поперечной устойчивости – уменьшает поперечный крен кузова.
    5. Резино-металлические шарниры – обеспечивают упругое соединение элементов подвески с кузовом. Частично амортизируют, смягчают удары и вибрации. Виды: сайлент-блоки и втулки.
    6. Ограничители хода подвески – ограничивают ход подвески в крайних положениях.

    Классификация подвесок

    В основном подвески подразделяются на два больших типа: зависимые и независимые. Данная классификация определяется кинематической схемой направляющего устройства подвески.

    Зависимая подвеска

    Колеса жестко связаны посредством балки или неразрезного моста. Вертикальное положение пары колес относительно общей оси не изменяется, передние колеса – поворотные. Устройство задней подвески аналогичное. Бывает рессорная, пружинная или пневматическая. В случае установки пружин или пневмобаллонов необходимо применение специальных тяг для фиксирования мостов от перемещения.

    Отличия зависимой и независимой подвески

    • простая и надежная в эксплуатации;
    • высокая грузоподъемность.
    • плохая управляемость;
    • плохая устойчивость на больших скоростях;
    • меньшая комфортабельность.

    Независимая подвеска

    Колеса могут изменять вертикальное положение относительно друг друга, оставаясь в той же плоскости.

    • хорошая управляемость;
    • хорошая устойчивость автомобиля;
    • большая комфортабельность.

    • более дорогая и сложная конструкция;
    • меньшая надежность при эксплуатации.

    Полузависимая подвеска

    Полузависимая подвеска или торсионная балка – это промежуточное решение между зависимой и независимой подвеской. Колеса по прежнему остаются связанными, однако существует возможность их небольшого перемещения относительно друг друга. Данное свойство обеспечивается за счет упругих свойств П-образной балки, соединяющей колеса. Такая подвеска в основном применяется в качестве задней подвески бюджетных автомобилей.

    Виды независимых подвесок

    МакФерсон

    Подвеска McPherson – самая распространенная подвеска передней оси современных автомобилей. Нижний рычаг соединен со ступицей посредством шаровой опоры. В зависимости от его конфигурации может применяться продольная реактивная тяга. К ступичному узлу крепится амортизационная стойка с пружиной, ее верхняя опора закрепляется на кузове.

    Двухрычажная передняя подвеска

    Поперечная тяга, закрепленная на кузове и соединяющая оба рычага, является стабилизатором, противодействует крену автомобиля. Нижнее шаровое соединение и подшипник чашки стойки-амортизатора дают возможность для поворота колеса.

    Детали задней подвески выполнены по тому же принципу, отличие заключается лишь в отсутствии возможности поворота колес. Нижний рычаг заменен на продольные и поперечные тяги, фиксирующие ступицу.

    • простота конструкции;
    • компактность;
    • надежность;
    • недорогая в производстве и ремонте.
    • средняя управляемость.

    Двухрычажная передняя подвеска

    Более эффективная и сложная конструкция. Верхней точкой крепления ступицы выступает второй поперечный рычаг. В качестве упругого элемента может использоваться пружина или торсион. Задняя подвеска имеет аналогичное строение. Подобная схема подвески обеспечивает лучшую управляемость автомобиля.

    Пневматическая подвеска

    Роль пружин в этой подвеске выполняют пневмобаллоны со сжатым воздухом. При пневматической подвеске есть возможность регулировки высоты кузова. Также она улучшает показатели плавности хода. Используется на автомобилях класса люкс.

    Гидравлическая подвеска

    Амортизаторы подключены к единому замкнутому контуру с гидравлической жидкостью. Гидравлическая подвеска дает возможность регулировать жесткость и высоту дорожного просвета. При наличии в автомобиле управляющей электроники, а также функции адаптивной подвески она самостоятельно подстраивается под условия дороги и вождения.

    Спортивные независимые подвески

    Винтовая подвеска, или койловеры – амортизационные стойки с возможностью настройки жесткости прямо на автомобиле. Благодаря резьбовому соединению нижнего упора пружины можно регулировать ее высоту, а также величину дорожного просвета.

    Подвески типа push-rod и pull-rod

    Данные устройства разрабатывались для гоночных автомобилей с открытыми колесами. В основе – двухрычажная схема. Основная особенность заключается в том, что демпфирующие элементы расположены внутри кузова. Конструкция данных типов подвески очень схожа, отличие заключается лишь в расположении воспринимающих нагрузку элементов.

    Различие спортивных подвесок push-rod и pull-rod

    Спортивная подвеска push-rod: воспринимающий нагрузку элемент – толкатель, работает на сжатие.

    Спортивная подвеска pull-rod: воспринимающий нагрузку элемент работает на растяжение.

    Такая конструкция снижает центр тяжести и обеспечивает лучшую устойчивость автомобиля. Подвеска pull-rod имеет более низкий центр тяжести, чем push-rod. Однако на практике их общая эффективность примерно одинакова.

    Подвеска автомобиля – комфортная связь с дорогой

    Что такое подвеска автомобиля, знает каждый, кто получил хоть небольшой опыт вождения, и только новички имеют лишь смутное представление об этом важном узле. А ведь именно эта совокупность деталей создает те условия движения, которые мы привыкли называть комфортными. Впрочем, она же может стать причиной некоторых неудобств на пересеченной местности. Итак, что же собой представляет подвеска?

    Подвеска автомобиля как его основа

    Так оно и есть, этот узел или, как было сказано выше, конструкция из ряда деталей, соединяет кузов машины с колесами, причем эта связь может быть как жесткой, так и упругой, в зависимости от установленных элементов. К примеру, задняя зависимая подвеска автомобиля, устройство которой отличается простотой, держится на двух цилиндрических пружинах и дополнительно крепится на 4 продольных рычагах. Однако такая конструкция имеет немалый вес, а значит, будет влиять на плавность хода. Но будем последовательны. Рассматриваемый нами узел делится по ряду признаков на следующие типы: многорычажный и двухрычажный, активный, торсионный, зависимый и независимый. Кроме того, есть деление на передние и задние подвески.

    Для начала рассмотрим двухрычажный и многорычажный виды подвесок автомобилей. Первый вариант имеет короткий верхний и длинный нижний поперечные рычаги, на которых и закреплен к кузову. Помимо этого, между крепежами предусмотрен цилиндрический упругий элемент, смягчающий толчки на неровной местности. Однако у такой схемы есть существенные недостатки – поперечные движения колеса слишком незначительны, что влияет на боковую устойчивость и, как следствие, ускоряет износ покрышек. Плюсом является то, что каждое колесо независимо, и благодаря этому автомобиль устойчивее держится на неровностях, поддерживая качественное сцепление с дорогой.

    Многорычажная схема представляет собой усложненный вариант двухрычажной со всеми ее достоинствами и отличается наличием шаровых шарниров, которые увеличивают мягкость хода, и сайлент-блоков (поворотных опор), которыми она и закреплена на раме. Эти блоки обеспечивают шумоизоляцию кузова от колес. Помимо прочего, добавьте сюда продольные и поперечные регулировки, возможные для каждого независимого элемента отдельно. Однако все эти преимущества увеличивают стоимость устройства, в результате чего подобные узлы ставят только на автомобили представительского класса, чем и объясняется их идеальный контроль на дороге, а также мягкость контакта с дорожным покрытием.

    Активный и торсионный типы подвесок автомобилей

    Очень интересна подвеска, название которой говорит само за себя – torsion, что на французском языке означает скручивание. Именно это свойство лучше всего характеризует торсионную схему. Изготавливается ее упругий элемент из легированной стали, которая после ряда обработок обретает очень интересную способность закручиваться вокруг продольной оси стержня. Он может иметь квадратное или круглое сечение, быть сплошным или набранным из отдельных пластин, в любом случае в результате получается подобие распрямленной пружины, но с лучшими характеристиками.

    Устанавливается torsion как продольно, так и поперечно, причем в первом случае на грузовики, а во втором – на легковые машины. Преимуществами торсионные типы подвесок автомобилей обладают следующими: легкость в сравнении с пружинными упругими элементами, компактность. Благодаря этим упругим деталям, можно с легкостью отрегулировать высоту дорожного зазора, стянув с помощью специального мотора стержни торсионов и, таким образом, приподняв кузов. Подобное устройство имеется во многих автомобилях, причем оно позволяет приподнять транспортное средство на трех колесах для замены четвертого без участия домкрата.

    Наиболее эффективное применение торсионные подвески нашли в производстве военной бронетехники.

    Активная подвеска имеет схему, разительно отличающуюся от классической, то есть никаких упругих элементов, будь то стержни или винтовые пружины, в данном узле нет. Все нагрузки из-за толчков колес или крена кузова на неровной местности компенсируются специальными пневматическими или гидравлическими стойками, в некоторых случаях возможна их комбинация. По сути, данный узел – не что иное, как баллон, заполненный жидкостью или сжатым газом, что распределяются на вышеозначенные стойки с помощью компрессоров. Подобная схема очень удобна ввиду возможности ее полной компьютеризации, когда электроникой регулируется жесткость амортизации, а также компенсируются перекосы кузова.

    Что лучше – зависимая или независимая схема подвески автомобиля?

    По сути, сегодня зависимая схема все больше устаревает и используется в тех немногих марках и моделях транспортных средств, которые выпускаются уже много десятков лет и еще не сняты с производства. Так, ярким примером узла такого типа является Волга или Жигули. Такая подвеска характерна также для УАЗа и некоторых классических моделей Jeep. Ее основным признаком является то, что при наезде на кочку одним колесом, вы получаете изменение угла всей оси. Комфорт движения в таких условиях – минимален, плюсом же является простота такой конструкции и, соответственно, ее низкая стоимость. Еще один вариант – зависимая схема де Дион, которая существует практически с начала автомобилестроения. В ней картер главной передачи крепится независимо от моста.

    Независимая схема подвески автомобиля имеет явные преимущества в том отношении, что каждое колесо перемещается на неровной местности само по себе, не влияя на второе. Один такой вариант мы уже рассматривали, это двухрычажная система. Другой, не менее интересный пример – схема МакФерсона, используемая с 1965 года, когда впервые была установлена на Пежо-204. Данная подвеска основана на одном единственном рычаге, блоке, стабилизирующем поперечную устойчивость, и еще одном блоке, состоящем из телескопического амортизатора в совокупности с винтовой пружиной. Такой вариант хуже двухрычажного, поскольку в схеме МакФерсона довольно ощутимо меняется развал при высоком ходе подвески, а также отсутствует изоляция дорожных вибраций.

    Читайте также:
    Накладки на задний, передний бампер и ремень безопасности – защитный тюнинг авто + Видео
    Рейтинг
    ( Пока оценок нет )
    Понравилась статья? Поделиться с друзьями:
    Добавить комментарий

    ;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: