Асинхронный двигатель – принцип работы, устройство, диагностика и ремонт + видео

Асинхронный электродвигатель: устройство, принцип работы, виды

Одним из наиболее распространенных типов электрических машин в мире является асинхронный электродвигатель. За счет высокой надежности и неприхотливости в работе такие агрегаты получили широкое распространение в самых различных отраслях промышленности и сельского хозяйства, они помогают решать бытовые и общепроизводственные задачи любой сложности. Поэтому в данной статье мы детально рассмотрим особенности асинхронных двигателей.

Устройство

Конструктивно простейшая асинхронная машина представляет собой рамку, вращающуюся в переменном магнитном поле. Однако на практике данная модель носит скорее ознакомительный характер и практического применения в промышленности не имеет. Поэтому на рисунке 1 ниже мы рассмотрим устройство действующей модели асинхронного электродвигателя.

Рис. 1. Устройство асинхронного электродвигателя

Весь двигатель располагается в корпусе станины 7, ее основная задача состоит в обеспечении достаточной механической прочности, способной выдерживать достаточные усилия. Поэтому чем выше мощность агрегата, тем большей прочностью должна обладать станина и корпус.

Внутрь корпуса устанавливается сердечник статора 3, выступающий в роли магнитного проводника для силовых линий рабочего поля. С целью уменьшения потерь в стали магнитопровод выполняется наборным из шихтованных листов, однако в ряде моделей применяется и монолитный вариант.

В пазы сердечника статора укладывается обмотка 2, предназначенная для пропуска электрического тока и формирования ЭДС. Число обмоток будет зависеть от количества пар полюсов на каждую фазу. Также в части уложенных обмоток электродвигатели подразделяются на:

  • трехфазные;
  • двухфазные;
  • однофазные.

Внутри статора располагается подвижный элемент – ротор 6. По конструкции ротор может быть короткозамкнутым или фазным, на рисунке приведен первый вариант. В состав ротора входит сердечник 5, также набранный из шихтованной стали и беличья клетка 4. Вся конструкция насажена на металлический вал 1, передающий вращение и механическое усилие.

Принцип работы

Заключается в формировании электромагнитного поля вокруг проводника, по которому протекает электрический ток. Для асинхронного электродвигателя данный процесс начинается сразу после подачи напряжения на обмотки статора, после чего в роторе наводится ЭДС взаимоиндукции, индуцирующей вихревые токи в металлическом каркасе. Наличие вихревых токов обуславливает генерацию собственной ЭДС, которая формирует электромагнитное поле ротора. Наиболее эффективный КПД асинхронной электрической машины получается при работе от трехфазной сети.

Конструктивно обмотки статора имеют смещение в пространстве друг относительно друга на 120°, что показано на рисунке 2 ниже:

Рис. 2. Геометрическое смещение фаз в статоре

Такой прием позволяет отстроить магнитное поле рабочих обмоток в строгом соответствии с напряжением трехфазной сети, которое имеет аналогичную разность кривых электрической величины.

Рис. 3. Принцип формирования магнитного потока асинхронного двигателя

На рисунке 3 выше все три фазы изображены в разных цветах для упрощения понимания процесса, также здесь изображена кривая токов, протекающих в фазах асинхронного электродвигателя. Теперь рассмотрим физические процессы в обмотках двигателя для трех позиций показанных на рисунке:

  • I – в этой позиции максимальный ток протекает в красной обмотке электродвигателя, а значение силы тока в желтой и синей равны. Основной поток силовых линий формируется красной фазой, а два других дополняют его.
  • II – в данной точке желтая синусоида равна нулю, поэтому никакого потока не создает, а сила тока красной и синей равны. Поток формируется сразу двумя фазами и смещается по часовой стрелке вправо, совершая поворот.
  • III – третья точка характеризуется максимумом токовой нагрузки для синей кривой, а красная и желтая имеет равную амплитуду, но противоположную по направлению. В результате чего максимум магнитных линий южного и северного полюса сместиться еще на 30°.

По данному принципу магнитное поле статора вращается в асинхронной электрической машине в течении периода. За счет магнитного взаимодействия с полем статора асинхронного электродвигателя происходит поступательное движение ротора вокруг своей оси. Можно сказать, что ротор пытается догнать поле статора. Именно за счет разницы во вращении полей данный тип электрической машины получил название асинхронной.

Отличие от синхронного двигателя

Наряду с простыми асинхронными электрическими машинами в промышленности также используются и синхронные агрегаты. Основным отличием синхронного двигателя является наличие вспомогательной обмотки на роторе, предназначенной для создания постоянного магнитного потока, что показано на рисунке 4 ниже.

Рис. 4. Отличие асинхронного от синхронного электродвигателя

Эта обмотка создает магнитный поток, не зависящий от наличия электродвижущей силы в обмотках статора электродвигателя. Поэтому при возбуждении синхронного электродвигателя его вал начинает вращаться одновременно с полем статора. В отличии от асинхронного типа, где существует разница в движении, которая физически выражается как скольжение и рассчитывается по формуле:

где s – это величина скольжения, измеряемая в процентах, n1 – частота, с которой вращается поле статора, n2 – частота, с которой вращается ротор.

Синхронные электродвигатели применяются в тех устройствах, где важно соблюдать высокую точность синхронизации подачи питания и начала движения. Также они обеспечивают сохранение рабочих характеристик в момент пуска.

Читайте также:
Самые длинные автомобили в мире: сведение о марке, длине в метрах и фото

На практике существует огромное количество разновидностей асинхронных электродвигателей, отличающихся как сферой применения, так и мощностью согласно ГОСТ 12139-84 . В связи с тем, что все вариации перечислить невозможно, мы рассмотрим наиболее значимые критерии, по которым асинхронные аппараты разделяются на виды.

По количеству питающих фаз выделяют:

  • трехфазные – используются в сетях, где есть возможность подключиться сразу ко всем фазам, но в частных случаях могут запускаться и в однофазной сети;
  • двухфазные – применяются во многих бытовых приборах, состоят из двух рабочих обмоток, одна из которых питается напряжением сети, а вторая подключается через фазосдвигающий конденсатор.
  • однофазные – как и предыдущая модель содержат две обмотки, одна из которых рабочая, а вторая пусковая.

По типу ротора различают:

  • с короткозамкнутым ротором – имеет тяжелый пуск, но и меньшую стоимость;
  • с фазным ротором – на роторе устанавливается вспомогательная обмотка, делающая работу электродвигателя более плавной.

Рисунок 5: асинхронный двигатель с короткозамкнутым и с фазным ротором

По способу подачи питания:

  • статорные – классические модели, в которых рабочие обмотки устанавливают на статор;
  • роторные – рабочие обмотки помещаются на вращающемся элементе, широкое применение на практике получили асинхронные двигатели Шраге-Рихтера.

Способы пуска и схемы подключения

Асинхронный электродвигатель с короткозамкнутым ротором обладает низкой себестоимостью, большими пусковыми токами и низким усилием на старте. Поэтому для различных целей могут применять различные способы пуска, снижающие бросок тока в обмотках и улучшающие рабочие характеристики:

  • прямой – напряжение на электродвигатель подается через пускатели или контакторы;
  • переключение схемы соединения обмоток электродвигателя со звезды на треугольник;
  • понижение напряжения;
  • плавный пуск;
  • изменение частоты питающего напряжения.

Однофазного асинхронного двигателя.

Для асинхронного однофазного электродвигателя могут использоваться три основных способа пуска:

  • С расщеплением полюсов – используется в электродвигателях особой конструкции, но недостатком методы является постоянная потеря мощности.

  • С конденсаторным пуском – вводит пусковой конденсатор в момент запуска асинхронного двигателя и убирает его со схемы через несколько секунд после начала работы. Обладает максимальным вращательным моментом.
  • С резисторным пуском электродвигателя – обеспечивает начальный сдвиг между векторами ЭДС обмоток для скольжения в асинхронной машине.

Трехфазного асинхронного двигателя.

Трехфазные асинхронные агрегаты могут подключаться такими способами:

  • Напрямую в цепь через пускатель или контактор, что обеспечивает простоту процесса, но формирует максимальные токи. Этот способ не подходит в случае больших механических нагрузок на вал.
  • Переключением схемы со звезды на треугольник – применяется для снижения токов в обмотках электродвигателя за счет уменьшения питающего напряжения с линейного на фазное.
  • Путем подключения через преобразователь напряжения, реостаты или автотрансформатор для снижения разности потенциалов. Также используется изменение числа пар полюсов, частоты питающего напряжения и прочие.

Помимо этого трехфазные асинхронные двигатели могут использовать прямую и реверсивную схему включения в цепь. Первый вариант применяется только для вращения вала электродвигателя в одном направлении. В реверсивной схеме можно переключать движение рабочего органа в прямом и обратном направлении.

Рис. 9: прямая схема без возможности реверсирования

Рассмотрим нереверсивную схему пуска асинхронного электродвигателя (рисунок 9). Здесь, через трехполюсный автомат QF1 питание подается на пускатель KM1. При нажатии кнопки SB2 произойдет подача напряжения на обмотки электродвигателя, его остановка осуществляется кнопкой SB1. Тепловое реле KK1 применяется для контроля температуры нагрева, а лампочка HL1 сигнализирует о включенном состоянии контактора.

Рисунок 10: схема прямого включения с реверсом

Реверсивная схема (смотрите рисунок 10) устроена аналогичным образом, но в ней используются два пускателя KM1 и KM2. Прямое включение асинхронного электродвигателя производиться кнопкой SB2, а обратное SB3.

Применение

Область применения асинхронных электродвигателей охватывает достаточно большой сегмент хозяйственной деятельности человека. Поэтому их можно встретить в различных типах станочного оборудования – токарных, шлифовальных, фрезерных, прокатных и т.д. В работе грузоподъемных кранов, талей, тельферов и прочих механизмов.

Их используют для лифтов, горнодобывающей техники, землеройного оборудования, эскалаторов, конвейеров. В быту их можно встретить в вентиляторах, микроволновках, хлебопечках и прочих вспомогательных устройствах. Такая популярность асинхронных электродвигателей обусловлена их весомыми преимуществами.

Преимущества и недостатки

К преимуществам асинхронных электродвигателей, в сравнении с другими типами электрических машин следует отнести:

  • Относительно меньшая стоимость, в сравнении с другими типами электродвигателей, за счет простоты конструкции;
  • Высокая степень надежности, благодаря отсутствию вспомогательных элементов редко выходят со строя;
  • Способны выносить кратковременные перегрузки;
  • Могут включаться в цепь напрямую без использования дополнительного оборудования;
  • Низкие затраты на содержание в ходе эксплуатации.

Основными недостатками асинхронного электродвигателя являются относительно большие пусковые токи и слабый пусковой момент, что в определенной степени ограничивает сферу прямого включения. Также асинхронные электродвигатели обладают низким коэффициентом мощности и сильно зависят от параметров питающего напряжения.

Устройство и принцип действия асинхронных электродвигателей

Всем привет. Рад вас видеть у себя на сайте. Тема сегодняшней статьи: устройство и принцип действия асинхронных электродвигателей. Так же я бы хотел немного сказать о способах регулировки их частоты вращения, и перечислить их основные преимущества и недостатки.

Читайте также:
Защита кузова автомобиля от сколов и царапин: антигравийная пленка, керамическая и другие варианты

Раньше, я уже писал статьи, касающиеся асинхронных электродвигателей. Если кому интересно, то можете почитать. Вот список:

Ну а теперь давайте перейдём к теме сегодняшней статьи.

В нынешнее время, очень трудно представить, как бы существовали все промышленные предприятия, если бы не было асинхронных машин. Эти двигателя установлены практически везде. Даже дома у каждого человека есть такой двигатель. Он может стоять на вашей стиральной машинке, на вентиляторе, на насосной станции, в вытяжке и так далее.

Вообще асинхронный электродвигатель – это колоссальный прорыв в мировой промышленности. Во всём мире их выпускают более 90 процентов от количества всех выпускаемых двигателей.

Асинхронный электродвигатель – это электрическая машина, которая преобразовывает электрическую энергию в механическую. То есть потребляет электрический ток, а взамен дают крутящий момент, с помощью которого можно вращать многие агрегаты.

А само слово «асинхронный» — означает неодновременных или не совпадающий по времени. Потому что у таких двигателей частота вращения ротора немного отстаёт от частоты вращения электромагнитного поля статора. Ещё это отставанием называют – скольжением.

Обозначается это скольжение буквой: S

А вычисляется скольжение по такой формуле: S = ( n1 — n2 )/ n1 — 100%

Где, n1 – это синхронная частота магнитного поля статора;

n2 – это частота вращения вала.

Устройство асинхронного электродвигателя.

Двигатель состоит из таких частей:

1. Статор с обмотками. Или станина внутри которой находится статор с обмотками.

2. Ротор. Это если короткозамкнутый. А если фазный, то можно сказать, что это якорь или даже коллектор. Я думаю, ошибки не будет.

3. Подшипниковые щиты. На мощных двигателях ещё спереди стоят подшипниковые крышки с уплотнителями.

4. Подшипники. Могут стоять скольжения или качения, в зависимости от исполнения.

5. Вентилятор охлаждения. Изготавливается из пластмассы или металла.

6. Кожух вентилятора. Имеет прорези для подачи воздуха.

7. Борно или клеммная коробка. Для подключения кабелей.

Это все его основные детали, но в зависимости от вида, типа и исполнения может немного изменяться.

Асинхронные электродвигателя в основном выпускают двух видов: трёхфазные и однофазные. В свою очередь трёхфазные ещё подразделяются на подвиды: с короткозамкнутым ротором или фазным ротором.

Самые распространённые – это трёхфазные с короткозамкнутым ротор.

Статор имеет круглую форму и набирается с листов специальной стали, которые изолированы между собой, и эта собранная конструкция образует сердечник с пазами. В пазы сердечника укладываются обмотки, со специального обмоточного, изолированного лаком провода. Провод это отливают в основном из меди, но также есть и с алюминия. Если двигатель очень мощный, то обмотки делаю шиной. Обмотки укладывают так, чтобы они были сдвинуты относительно друг друга на 120 градусов. Соединяются обмотки статора в звезду или в треугольник.

Ротор, как выше я уже писал выше, бывает короткозамкнутый или фазный.

Короткозамкнутый представляет собой вал, на который надеваются листы, из тоже специальной, стали. Эти наборные листы образую сердечник, в пазы которого заливают расплавленный алюминий. Этот алюминий равномерно растекается по пазам и образует стержни. А по краям эти стержни замыкают алюминиевыми кольцами. Получается своего рода «беличья клетка».

Фазный ротор представляет собой вал с сердечником и тремя обмотками. Одни концы, которых обычно соединяют в звезду, а вторые три конца присоединяют к токосъемным кольцам. А на эти кольца, с помощью щёток подают электрический ток.

Если в цепь фазных обмоток добавить нагрузочный реостат, и при пуске двигателя увеличивать активное сопротивление, то таким способ можно уменьшить большие пусковые токи.

Принцип действия.

Когда на обмотки статора подаются электрический ток, то в этих обмотках возникает электрический поток. Как вы помните, из выше написанных слов, фазы у нас смещены относительно друг друга на 120 градусов. И вот этот поток в обмотках начинает вращаться.

И при вращении магнитного потока статора, в обмотках ротора появляется электрический ток, и своё магнитное поле. Два этих магнитных поля начинают взаимодействовать и заставляют вращаться ротор электродвигателя. Это если ротор короткозамкнутый.

По принципу роботы вот посмотрите видео ролик.

Ну а с фазным ротором, по сути, принцип тот же. Напряжение подаётся на статор и на ротор. Появляются два магнитных поля, которые начинают взаимодействовать и вращать ротор.

Достоинства и недостатки асинхронных двигателей.

Основные достоинства асинхронного электродвигателя с короткозамкнутым ротором:

1. Очень простое устройство, что позволяет сократить затраты на его изготовление.

2. Цена намного меньше по сравнению с другими двигателями.

Читайте также:
Как накачать колесо без насоса - обзор полезных и вредных способов

3. Очень простая схема запуска.

4. Скорость вращения вала практически не меняется с увеличением нагрузки.

5. Хорошо переносит кратковременные перегрузы.

6. Возможность подключения трёхфазных двигателей в однофазную сеть.

7. Надёжность и возможность эксплуатировать практически в любых условиях.

8. Имеет очень высокий показатель КПД и cos φ.

Недостатки:

1. Не возможности контролировать частоту вращения ротора без потери мощности.

2. Если увеличить нагрузку, то уменьшается момент.

3. Пусковой момент очень мал по сравнению с другими машинами.

4. При недогрузе увеличивается показатель cos φ

5. Высокие показатели пусковых токов.

Достоинства двигателей с фазным ротором:

1. По сравнению с короткозамкнутыми двигателями, имеет достаточно большой вращающий момент. Что позволяет его запускать под нагрузкой.

2. Может работать с небольшим перегрузом, и при этом частота вращения вала практически не меняется.

3. Небольшой пусковой ток.

4. Можно применять автоматические пусковые устройства.

Недостатки:

1. Большие габариты.

2. Показатели КПД и cos φ меньше, чем у двигателей с короткозамкнутым ротором. И при недогрузе эти показатели имеют минимальное значение

3. Нужно обслуживать щёточный механизм.

На этом буду заканчивать свою статью. Если она была вам полезной, то поделитесь нею со своими друзьями в социальных сетях. Если есть вопросы, то задавайте их в комментариях и подписывайтесь на обновления. Пока.

Устройство, принцип работы и схема подключения асинхронного двигателя с фазным ротором

Асинхронный двигатель с фазным ротором имеет очень обширную область обслуживания. АД (асинхронный двигатель) чаще применяется в управлении двигателями большой мощности. Обслуживание и управление приводов мельниц, станков, насосов, кранов, дымососа, дробилок. Асинхронный двигатель с массивным ротором даёт возможность подключения множества технических механизмов.

Характеристика асинхронного двигателя

Преимущества использования:

  • Запуск двигателя с нагрузкой, подключение к валу благодаря созданию большого момента вращения. Это обеспечивает обслуживание асинхронных двигателей с фазовым элементом любой мощности.
  • Возможность постоянной скорости вращения большой или маленькой нагрузки
  • Регулирование автоматического пуска.
  • Работа даже при перегрузке тока напряжения.
  • Простота использования.
  • Невысокая стоимость.
  • Надёжность применения.
  • Использование резисторов увеличивается стоимость, а работа двигателя усложняется,
  • Большие размеры,
  • Значение КПД меньше, чем короткозамкнутых роторов,
  • Трудное управление скоростью вращения,
  • Регулярный капитальный ремонт .

Схема подключения

При подключении к току начинают работать реле времени. Контакты размыкаются. При нажатии тумблера происходит пуск.

Чтобы подключить АД нужно правильно обозначить концы и начала обмоток фазы.

Устройство двигателя

Главными постоянными являются статор и ротор. Статор представляет собой цилиндр, состав –листы электротехнической стали, в цилиндр уложена трёхфазная обмотка. Она состоит из обмоточной проволоки. Которые соединены между собой в виде звезды или треугольника в зависимости от напряжения.

Ротор – основная вращающаяся часть двигателей. Он в зависимости от расположения может быть внешним, внутренним. Данный элемент состоит из стальных листов. Пазы сердечника наполнены алюминием, который имеет стержни, содержащие торцевые кольца. Они могут быть латунными или стальными, каждое из них изолировано слоем лака. Между трёхфазным статором и ротором образуется зазор. Регулирование размер зазора от 0,30 –0,34 мм в устройствах с небольшим напряжением, 1,0–1,6 мм в устройствах с большим постоянным электрическим напряжением. Конструкция имеет название беличья клетка. Для мощных двигателей используется медь в сердечнике. Контактор начинает действие, двигатель заводится.

Существует добавочный резистор в цепи обмотки вращающей части машины, крепится с помощью металлографитных щеток. Щетки обычно используются две, расположены на щеткодержателе. В приводах кранах и центрифугах для регулирования роботы применяется конический подвижный ротор. Асинхронные двигатели с фазным ротором незаменимы при технических требованиях мощного пускового момента. Это могут быть такие механизмы, как кран, мельница, лифт.

Схема переключения электрической цепи со звезды на треугольник

Принцип работы

В основе АД лежит вращение поля магнитов. В область обмотки трёхфазного статора поступает ток, а в фазах возникает поток магнитов, изменяемый в зависимости от скорости и частоты постоянной электрической мощности. При статорном вращении возникает электродвижущая сила.

В роторную обмотку подходит напряжение, которое совместно с постоянным магнитным потоком статора образует пуск. Он стремится направить ротор по магнитному вращению статора и при достижении превышения момента торможения, приводит к скольжению. Оно выражает отношение между частотами статорного силового поля магнитов и скоростью роторного вращения.

Чертеж режима кз

При балансе между моментами электромагнита и торможения, перемена значений остановится. Особенность эксплуатации АД – сольватация кругового движения силового поля статора и им наводящих токов в роторе. Момент вращения возникает лишь при разнице частот круговых движений магнитных полей.

Машины различают синхронные, асинхронные. Разница механизмов в их обмотке. Она образует магнитное поле.

Неподвижность ротора и замыкание обмотки приводит к короткому замыканию (кз).

Расчёт числа повторений

Возьмём m1 – процесс повторения постоянного поля магнитов и ротора. Система фазы переменного тока образуют вращение поля магнитов.

Читайте также:
Ремкомплект суппорта – какой выбрать и как использовать? + видео

Данные расчета считаются по формуле:

f1– частота электричества$

p – количество полюсных пар каждой обмотки статора.

m2 – процесс повторения вращения ротора. Имея различное количество одновременных повторений, данная скорость частоты будет асинхронной. Определение расчёта частоты проводится по соотношению между данными:

Асинхронный электродвигатель работает только при асинхронной частоте.

(m2 Реостатный пуск

Часто для включения двигателя безмощных пусковых моментов оказывают нужное действие реостаты. Схема реостатного способа:

Главной характеристикой метода является присоединение двигателя при пуске к реостатам. Реостаты разрываются (на чертеже К1), на них идет частично электрический ток. Что дает возможность уменьшить пусковые токи. Пусковой момент тоже снижается. Преимущество реостатного способа заключается в снижении нагрузки на механическую часть и нехватку напряжения.

Ремонт и характеристики неисправностей

Причиной ремонта могут служить внешние и внутренние причины.

Внешние причины ремонта:

  • обрыв провода или нарушение соединений с электрическим током,
  • сгорание предохранителей,
  • понижение или повышения напряжения,
  • перегруженность АД,
  • неравномерная вентиляция в зазоре.

Внутренняя поломка может возникнуть по механическим и электрическим причинам.

Механические причины ремонта:

  • неправильное регулирование зазора подшипников,
  • повреждение вала ротора,
  • расшатывание щеткодержателей,
  • возникновение глубоких выработок,
  • истощение креплений и трещины.

Электрические причины ремонта:

  • замыкания витков,
  • поломка провода в обмотках,
  • пробивание изоляции,
  • пробой пайки проводов.

Данные причины – это далеко не полный список поломок.

Асинхронный двигатель – незаменимый и важный механизм, применяемый для обслуживания быта и различных отраслей промышленности. Для практического действия АД с фазным ротором необходимо знать техническую характеристику управления, использовать его по назначению и регулярно проводить ремонт при технических осмотрах. Тогда асинхронный двигатель станет практически вечной эксплуатации.

Асинхронный двигатель – принцип работы и устройство

Электрические установки, которые преобразуют энергию электрическую в энергию механическую, называются электродвигателями. Работают они от переменного тока 3-х фазной сети. В основном сегодня в промышленности и быту применяются асинхронные двигатели. Чтобы разобраться, как они работают, необходимо рассмотреть асинхронный двигатель – принцип работы его, конструкцию и возможности, которые приводят к изменению параметров. Итак, наша статья – устройство и принцип действия асинхронного электрического двигателя.

Конструкция

Буквально несколько слов о том, как устроен асинхронный двигатель. Итак, состоит он из двух частей, между которыми есть небольшой воздушный зазор. Первая часть неподвижная – это статор. Вторая подвижная (вращающаяся) – это ротор. Но и в той, и в другой есть сердечник и обмотка. Только обмотка статора, в данном случае, является первичной, то есть, именно на нее подается электрический ток, а ротора вторичной.

При этом статор состоит из сердечника, обмоток и корпуса (станины), последний чаще всего изготавливается из чугуна или алюминиевого сплава. Сердечник же асинхронного электродвигателя представляет собой конструкцию, собранную из листов специальной электромеханической стали толщиною от 0,35 мм до 0,5 мм. Такая конструкция используется специально, чтобы уменьшить действие вихревых токов, которые обязательно возникают под действием магнитного поля, которое вращается. Это поле созданно обмоткой статора. Если сердечник будет изготовлен из цельного металла, то произойдет его перемагничивание.

Именно в пазы сердечника и укладывается медный провод, который может быть однослойным или многослойным в плане укладки.

Что касается ротора, то, по сути, это вал, на который насажен сердечник. В качестве обмотки здесь используются стержни или из алюминия, или из меди, которые по торцам замыкаются кольцами. Сам он вращается в подшипниках, установленных а торцевых крышках. Вот такие особенности конструкции асинхронного двигателя.

Как работает

Начнем с самого главного, что в электродвигателях движение ротора создается за счет вращающегося магнитного поля, которое, в свою очередь, образуется за счет движения электрического тока в обмотке статора. Это и есть основной принцип действия асинхронного двигателя.

Если более глубоко начать разбираться в процессах, действующих внутри движка, то начнем с определения частоты вращения поля. Для этого можно воспользоваться формулой:

  • f – это частота электрической сети питания, измеряемая в герцах (Гц);
  • p – это количество пар полюсов.

Образованное магнитное поле пронизывает собой сразу две обмотки: и статора, и ротора. Именно под ее действием образуется электродвижущая сила, которая и вращает моторный вал. При этом в статоре образуется электродвижущая сила самоиндукции. Она, во-первых, направлена против приложенного напряжения в подающей сети. Во-вторых, она же сдерживает ток.

Внимание! В короткозамкнутых электродвигателях обмотка ротора замкнута накоротко, отсюда и название. В фазных моделях обмотка замыкается через сопротивление.

Но как же при этом создается вращение вала? Все дело в том, что под действием электродвижущей силы ротора во вторичной обмотке появляется ток. Именно он, взаимодействуя с вращающимся магнитным полем, создает определенную электромагнитную силу, которая его и вращает. Кстати, направление действия можно определить по правилу левой руки.

У магнитного поля есть два полюса: северный и южный. Если берем за основу правило левой руки, то полюса вращаются относительно статора против часовой стрелки. То есть, они все время перемещаются. По сути, на этом и основан принцип работы асинхронного двигателя.

Читайте также:
Минимальная толщина тормозного диска: какая должна быть?

Итак, на проводник, где проводит электрический ток, действует электромагнитная сила, о которой уже выше упоминалось. Это суммарная величина, которая образует электромагнитный момент вращения. По-простому, момент движется по направлению вращения самого магнитного поля. Если момент имеет большую величину, то ротор будет обязательно вращаться.

Кстати, электродвижущая сила в обмотках зависит от разности частоты вращения ротора и магнитного поля. Вторая величина должна быть больше первой. И чем данная разница будет больше, тем выше электродвижущая сила. То есть, получается так, что асинхронный двигатель может работать только в том случае, если величина частоты вращения магнитного поля будет больше частоты вращения ротора. Это и есть основное условия работы.

Отсюда и название самого мотора, потому что вал вращается не синхронно с магнитным полем. Вот такой принцип работы и устройство.

Заключение по теме

Итак, в этой статье был разобран принцип действия асинхронного двигателя. Наша задача была по-простому рассказать обычным обывателям, как работает эта электрическая машина, почему она так называется, а также немного обозначить ее устройство. Скажем прямо, что все правила, заложенные в работу мотора, основаны на сложных физических законах, связанных с электричеством. Именно на сложных, поэтому асинхронный двигатель является сложным агрегатом.

Асинхронный двигатель- Принцип работы и устройство

В какой бы сфере не участвовал человек, повсюду применяются электрические моторы. Сегодня изделия задействованы как в промышленности, так и в быту. Механизмы несут массу положительных качеств: простота, надёжность, долговечность, экологическая чистота. Характеристики дают моторам охватывать большее количество незанятых ниш, изделия уже вплотную используются в автомобилестроении.

Среди разновидностей, по количеству произведённых электрических машин, асинхронный двигатель занимает первое место. Относительная дешевизна и универсальность мотора при эксплуатации стали решающим фактором, повлиявшим на массовость выпуска. Перспективы развития агрегатов увеличиваются, поскольку сегодня нет, чище способа получить механическую работу, чем использовать электричество. В реалиях, целесообразность экологических аспектов растёт с каждым годом в геометрической прогрессии, поэтому рассмотрим установку детально.

Асинхронный двигатель в разрезе:

История асинхронного двигателя

Начало развития асинхронных двигателей было положено в 88 году девятнадцатого века, когда итальянский электротехник Галилео Феррарис опубликовал в Турине статью о теоретических основах асинхронного электродвигателя. Ошибочные выводы итальянца о небольшом коэффициенте полезного действия асинхронных двигателей вызвало большой интерес среди других инженеров. Силы большинства учёных направлены на усовершенствование изделия.

Итальянский электротехник Галилео Феррарис (1847-1897 года жизни):

После того, как в том же году статью перепечатал английский журнал, её прочитал выпускник Дармштадтского технического училища, М.О. Доливо-Добровольский. Через год, талантливый выходец из Российской Империи получил патент на трёхфазный асинхронный двигатель с короткозамкнутым ротором.

Русский электротехник Доливо-Добровольский (1862-1919 года жизни):

Труды изобретателя положили начало массовому применению электрических двигателей. Так, в Новороссийске в третьем году двадцатого века, под руководством учёного, построен первый в мире элеватор, использовавший промышленную сеть переменного трёхфазного тока с трёхфазными трансформаторами и синхронными двигателями с фазным ротором. Сегодня, трёхфазный асинхронный двигатель Добровольского, самая распространённая электрическая машина.

Устройство асинхронного двигателя

Назначение асинхронного двигателя, это преобразование энергии электричества в механическую работу. Выполнить эту задачу установке помогают две детали: статор и ротор.

Устройство статора представлено в виде неподвижной части мотора, которая взаимодействует с подвижной частью, ротором. Между ротором и статором воздушный зазор, разделяющий механизмы. Активной частью механизмов является обмотка и детали сердечника, проводящие магнитный поток, возбуждаемый электрическим током, проходящим по обмотке. С целью минимизировать магнитные потери, при перемагничивании сердечника, деталь набирают из пластин, изготовленных из электротехнической стали. Обмотка статора конструктивно равномерно укладывается проводниками в пазы сердечника, угловое расстояние 120°. Схема соединения фаз обмотки статора «треугольник» или «звезда». В целом, статор представляет собой большой электрический магнит, цель которого, создать магнитное поле.

Статор и ротор асинхронного двигателя:

Схема подключения «звезда» или «треугольник» выбирается в зависимости от напряжения питания сети. Существенную роль играют такие понятия:

Фазное напряжение, соответствует разности потенциалов между началом и концом одной фазы, или разница потенциалов между линейным и нейтральным проводом.
Линейное напряжение, разность потенциалов между двумя линейными проводами (фазами)

Iл, Iф – ток (линейный и фазовый), А;

;

;

;

;

Важно! Мощность для соединения «звезда» и «треугольник» рассчитывается по одной формуле. Однако, подключение одного и того же асинхронного двигателя разными соединениями в одну и ту же сеть, приведёт к разной потребляемой мощности. Неправильное подключение способно расплавить обмотки статора.

Поскольку асинхронный двигатель широко распространён повсеместно, на его долю приходится потребление от 45% до 50% вырабатываемой электроэнергии. Что бы снизить расход электроэнергии (почти на 50%) и не потерять в мощности и цене двигателя, в конструкции механизма используют применение совмещённых обмоток. Принцип заключается в схеме подключения нагрузки к сети. Совмещение обмоток «звезда» «треугольник» при последующем подключении к трёхфазной сети даёт в итоге систему из шести фаз, угол между магнитными потоками в которой равен 30°. Метод сглаживает кривую магнитного поля между ротором и статором, это положительно сказывается на показателях электродвигателя.

Читайте также:
Как проверить утечку тока на автомобиле мультиметром: найти и самостоятельно померить тестером допустимые значения

В зависимости от конструкции ротора, асинхронный двигатель условно делят на виды: короткозамкнутый ротор, фазный ротор. Статор обоих механизмов одинаков, отличительная черта, обмотка. Сердечник ротора так же выполнен из электротехнической стали, методом комбинирования прямых и косых стыков пластин.

Составные детали двигателя размещаются в корпусе. Для небольших моторов корпус делают цельнолитым, материал изделия, чугун. Кроме того, применяют сплав алюминия, либо сталь. Некоторые корпуса в маленьких двигателях совмещают функцию сердечника, в мощных двигателях корпус выполняется из составных частей.

Поскольку асинхронный мотор относится к электрической машине, изделие применяется как в режиме двигателя, так и в режиме генератора. Однако, как генератор, асинхронный механизм имеет ряд недостатков, которые не позволили машине использоваться массово в этом качестве.

Тип подвижной части

Как уже упоминалось, в зависимости от того, в каком виде выполнена подвижная часть, асинхронные двигатели делят:

  • Асинхронный двигатель с короткозамкнутым ротором.

Такая конструкция носит название «беличья клетка» за внешнюю схожесть. Конструктивно механизм состоит из стержней, которые замкнуты по торцам кольцами. Материал детали, медь или алюминий. В двигателях малой и средней мощности конструкцию выполняют, заливая расплавленный алюминий в пазы сердечника ротора, заодно выполняются кольца и торцевые лопасти. Назначение лопастей, вентилировать мотор. В мощных двигателях стержни клетки делают из меди, торцы стержней приваривают к кольцам.

Наличие зубцов с низким магнитным сопротивлением, в сравнении с сопротивлением обмотки, вызывает пульсацию магнитного потока. Пульсация приводит к росту гармонических токов напряжения электродвижущей силы. Чтобы снизить это явление, а так же уменьшить шум, пазы ротора или статора делают скошенными.

Недостаток короткозамкнутого ротора в том, что пусковой момент двигателя этой конструкции небольшой, наряду со значительным показателем пускового тока. Применение этих моторов целесообразно в случаях, если не требуются большие пусковые моменты. Достоинство: простота изготовления, низкая инерция, нет контакта со статической частью, как следствие, долговечность и приемлемая стоимость обслуживания.

Короткозамкнутый ротор асинхронного двигателя:

  • Асинхронный двигатель с фазным ротором.

Чаще конструкция имеет трёхфазную обмотку, иногда многофазную. Как правило, обмотка соединена по схеме «звезда» с выводом на кольца контакта, вращающиеся с валом двигателя. По кольцам контакта скользят щётки, выполненные из металла и графита. С помощью этих щёток, в цепь обмотки ротора встраивают реостат, отвечающий за регулировку пуска. Регулировка возможна, поскольку реостат играет роль добавочного активного сопротивления для каждой фазы.

Фазный ротор асинхронного двигателя:

Фазный ротор двигателя при включении максимально увеличивает момент пуска и уменьшает ток, это возможно из-за применения реостата. Такие характеристики приводят в действие механизмы, для которых характерна большая нагрузка в момент пуска.

Принцип работы

Рассмотрим асинхронный двигатель принцип работы и устройство. Для корректного подключения агрегата к сети, обмотки соединяются по схеме «звезда» или «треугольник». Действие механизма основано на использовании вращающегося магнитного поля статора. Частота вращения многофазной обмотки переменного поля (n1) определяется по формуле:

  • f – частота сети в Герцах;
  • p – Количество пар полюсов (как правило, 1-4 пары, поскольку чем их больше, тем ниже мощность и КПД, использование полюсов даёт возможность не применять редуктор, при низкой частоте вращения).

Магнитное поле, пронизывающее статор с обмоткой пронизывает и обмотку ротора. За счёт этого индуцируется электродвижущая сила. Электродвижущая сила самоиндукции в обмотке статора (Е1) направлена навстречу приложенному напряжению сети, ограничивая величину тока в статоре. Поскольку обмотка ротора замкнута, или идёт через сопротивление (короткозамкнутый ротор в первом случае, фазный ротор во втором случае), то под действием электродвижущей силы ротора (Е2) в ней образуется ток. Взаимодействие индуцируемого тока в обмотке ротора и магнитного поля статора создаёт электромагнитную силу (Fэл). Направление силы определяется по правилу левой руки.

Согласно правилу: левая рука устанавливается таким образом, что бы магнитно силовые линии входили в ладонь, а вытянутые четыре пальца направлялись вдоль движения тока в обмотке. Тогда отведённый большой палец покажет направление действия электромагнитной силы для конкретного проводника с током.

Совокупность электромагнитных сил двигателя будет равна общему электромагнитному моменту (М), который приводит в действие вал электродвигателя с частотой (n2). Скорость ротора не равна скорости вращения поля, поэтому эта скорость называется асинхронной скоростью. Вращающий момент в асинхронном двигателе развивается только при асинхронной скорости, когда скорость вращения ротора не равна скорости вращения магнитного поля. Важно, что бы при работе двигателя скорость ротора была меньше скорости поля (n2 Таким образом, частота вращения ротора (обороты) будет равна:

Читайте также:
Как сделать подвеску мягче?

Принцип работы асинхронного электрического двигателя легко объясняется с помощью устройства, называющегося диск Арго – Ленца.

Постоянный магнит закрепляют на оси, которая устанавливается в устройстве, способном обеспечить её вращение. Перед полюсами магнита (N-S) помещают диск, выполненный из меди. Диск так же крепится на оси и свободно вращается вокруг неё.

Если вращать магнит за рукоятку, диск тоже будет вращаться в том же направлении. Эффект объясняется тем, что магнитные линии поля, создаваемые магнитом, замыкаются от северного полюса к южному полюсу, пронизывая диск. Эти линии образуют в диске вихревые токи, которые взаимодействуя с полем, приводят к возникновению силы, вращающей диск. Закон Ленца гласит, что направление всякого индукционного тока противодействует величине, вызвавшей его. Вихревые токи пытаются остановить магнит, но поскольку это не возможно, диск следует за магнитом.

Примечательно, что скорость вращения диска всегда меньше скорости вращения магнита. В асинхронных электродвигателях магнит заменяет вращающееся магнитное поле, созданное токами трёхфазной обмотки статора.

Подключение двигателя

До того, как подключить асинхронный двигатель, ознакомьтесь с его паспортом. Обмотки статора двигателя соединены «звездой» или «треугольником», в зависимости от напряжения сети. Если в паспорте указано, что механизм рассчитан на применение 220/380В, это означает, что при подключении мотора на 220В обмотки соединяют схемой «треугольник», если напряжение сети 380В, обмотки соединяют схемой «звезда».

Маркировка на коробке для клемм:

Сбор схем проводится в коробке для клемм, расположенной на корпусе электродвигателя, перед выполнением работ, коробку разбирают. Начало каждой обмотки именуется U1, V1, W1 соответственно. Концы обмоток подписываются так же U2, V2, W2. При отсутствии в коробке для клемм маркировки выводов, начало и конец обмотки определяют, используя мультиметр.

Процедура выполняется следующим образом:

  • Подписываем бирки, которыми будем маркировать выводы обмоток;
  • Определяем принадлежность шести выводов к трём обмоткам. Для этого берём мультиметр, переключаем в положение «200 Ом». Один щуп подключаем к любому из шести проводов, второй щуп используем, что бы прозвонить оставшиеся пять выводов. При нахождении искомого провода показания прибора будут отличными от «0».
  • Эти два провода — первая обмотка двигателя. Надеть на провода бирки (U1, U2) в произвольном порядке.

  • Проделываем аналогичную процедуру со второй и третьей обмоткой. Выводы второй обмотки маркируем (V1, V2), выводы третьей обмотки маркируем (W1, W2).
  • Определяем вид подключения обмоток (согласованный или встречный).

Важно! Согласованное подключение создаёт электродвижущую силу, которая будет равна сумме сил обмоток. Встречное подключение даст электродвижущей силе нулевое значение, поскольку силы будут направлены друг навстречу другу.

  • Катушку (U1, U2) соединяем с катушкой (V1, V2), после чего на выводы (U1, V2) подаём переменное напряжение 220 вольт.
  • На выводах (W1, W2) меряем переменное напряжение. Если значение напряжения равно нулю, то обмотки подключены встречно, если прибор показывает некоторое значение, обмотки (U1, U2) и (V1, V2) подключены согласованно.
  • Аналогичным образом определяем правильность подключения третьей обмотки.
  • В зависимости от типа двигателя подключаем промаркированные концы проводов схемой «звезда» или «треугольник».
  • Подаём питание на двигатель, проверяем работу.

При необходимости обратного вращения асинхронного двигателя, для этого меняют местами два провода подключаемого источника трёхфазного напряжения.

Подключение двигателя на одну фазу

Для бытовых нужд использование трёхфазного мотора проблематично, поскольку отсутствует требуемое напряжение. Решение проблемы, использовать однофазный асинхронный двигатель. Такой мотор оснащен статором, однако конструктивно изделие отличается количеством и расположением обмоток, а так же схемой их запуска.

Схема подключения однофазного двигателя:

Так, однофазный асинхронный двигатель со статором из двух обмоток будет располагать их со смещением по окружности под углом 90°. Соединение катушек будет параллельным, одна — пусковая, вторая — рабочая. Что бы создать вращающееся магнитное поле, дополнительно вводят активное сопротивление, или конденсатор. Сопротивление создаёт сдвиг фаз токов обмотки, близкий к 90°, что помогает создать вращающее магнитное поле.

При использовании статором асинхронного двигателя одной катушки, подключение источника питания в одну фазу создаст пульсирующее магнитное поле. В обмотке ротора появится переменный ток, который создаст магнитный поток, как следствие работа двигателя не произойдёт. Для запуска такого агрегата создают дополнительный толчок, подключив конденсаторную схему пуска.

Асинхронный двигатель, рассчитанный на подключение к трёхфазному источнику питания, работает и от одной фазы. Пользователей интересует вопрос, как подключить асинхронный двигатель на 220В. Помните, что подключение снизит коэффициент полезного действия двигателя, а так же повлияет на мощность и показатели пуска. Для выполнения задачи надо из трёх обмоток статора собрать схему, сделав так, что бы обмоток было две. Одна обмотка будет рабочей, вторая используется для запуска агрегата. Как пример, предположим, что есть три катушки с начальными выходами (U1, V1, W1) и конечными выходами (U2, V2, W2). Создаём первую рабочую обмотку, объединив концы (V2, W2), а начало (V1, W1) подключаем к сети в 220В. Пусковой обмоткой будет оставшаяся катушка, которую подключают к питанию через конденсатор, соединив её с ним последовательно.

Читайте также:
Диагностика подвески автомобиля своими силами

Асинхронный двигатель с двумя скоростями

Иногда необходимо изменить скорость асинхронного двигателя. Механизмы с управлением от электронного блока дорогие, поэтому применяют двухскоростной асинхронный двигатель. Принцип такого механизма в том, что обмотку в этом моторе подключают особым образом, по схеме Даландера, что меняет скорость вращения.

Схема подключения Даландера:

Подключая выводы U1, V1, W1 к напряжению в три фазы, двигатель вписывается в схему «треугольник» и работает на пониженной скорости. Если выводы (U1, V1, W1) замкнуть, а питание кинуть на (U2, V2, W2), то получится двухскоростной электродвигатель, работающий по схеме «двойная звезда», увеличивающей скорость в два раза.

Перекись водорода : инструкция по применению

Описание

Бесцветная прозрачная жидкость.

Состав

Флакон 40 мл содержит:

действующее вещество: перекись водорода – 1,2 г;

вспомогательные вещества: натрия бензоат, вода очищенная.

Флакон 100 мл содержит:

действующее вещество: перекись водорода – 3 г;

вспомогательные вещества: натрия бензоат, вода очищенная.

Флакон 200 мл содержит:

действующее вещество: перекись водорода – 6 г;

вспомогательные вещества: натрия бензоат, вода очищенная.

Флакон 400 мл содержит:

действующее вещество: перекись водорода – 12 г;

вспомогательные вещества: натрия бензоат, вода очищенная.

Фармакотерапевтическая группа

Прочие антисептические и дезинфицирующие средства.

Код АТС: D08AX01.

Фармакологическое действие

Антисептическое средство из группы оксидантов. При контакте перекиси водорода с поврежденной кожей или слизистыми оболочками высвобождается активный кислород, который обладает противомикробным, дезодорирующим, депигментирующим свойством, при этом происходит механическое очищение и инактивация органических веществ (протеины, кровь, гной). Антисептическое действие не является стерилизующим, при его применении происходит лишь временное уменьшение количества микроорганизмов. Обильное пенообразование способствует тромбообразованию и остановке кровотечений из мелких сосудов.

Показания к применению

Дезинфектант для обработки небольших порезов, ран (в том числе гнойных), изъязвлений кожи, ожогов.

Для остановки незначительных кровотечений (поверхностных, носовых).

Для полоскания полости рта и горла (при стоматите, ангине).

При гинекологических заболеваниях с целью дезинфекции.

Способ применения и дозы

Для наружного применения используют раствор 30 мг/мл; для полоскания полости рта и горла, нанесения на слизистые оболочки – раствор 2,5 мг/мл (раствор 30 мг/мл разводят водой в соотношении 1:11). Неразбавленный раствор не применяют для обработки слизистых оболочек. Поврежденные участки кожи или слизистой оболочки обрабатывают ватным или марлевым тампоном, смоченным раствором лекарственного средства. Тампоны следует держать пинцетом. Возможно струйное орошение раневой поверхности.

Побочное действие

При обработке раны возможно возникновение чувства жжения.

При длительном применении для полосканий возможна гипертрофия сосочков языка, потеря чувствительности.

Возможно проявление местных аллергических реакций при индивидуальной непереносимости лекарственного средства.

В случае возникновения побочных реакций, в т.ч. не указанных в данной инструкции, необходимо обратиться к врачу.

Противопоказания

Повышенная чувствительность к компонентам лекарственного средства.

Не используется в закрытых полостях тела и хирургических ранах из-за опасности газовой эмболии, как следствия поступления свободного кислорода в циркуляцию.

Не используется для дезинфекции хирургических инструментов (частей эндоскопов) и клизм.

Передозировка

Случайное попадание внутрь может стать причиной болезненности в глотке, желудочных сокращений и рвоты. Внезапное поступление свободного кислорода в желудочно-кишечный тракт может вызвать острое раздувание желудка и внутреннее кровотечение. Разрешается пить воду. Поступление больших объемов перекиси может привести к газовой эмболии, являющейся следствием высвобождения кислорода в желудок.

Меры предосторожности

Только для наружного применения. Не рекомендуется использовать лекарственное средство под окклюзионные повязки. Следует избегать попадания в глаза. Не применять для орошения закрытых полостей и проникающих ран во избежание высвобождения свободного кислорода в циркуляцию и возникновения газовой эмболии.

Не стабилен в щелочной среде, в присутствии щелочей металлов, сложных радикалов некоторых оксидантов, а также на свету и в тепле. Осветляет ткань.

Обработка раны раствором перекиси водорода не гарантирует защиту от заражения столбняком и др. раневой инфекцией.

Применение в педиатрической практике.

Для полоскания полости рта и горла применяется у детей с 12 лет. Применение у детей младшего возраста допускается только по показаниям врача.

Применение в гериатрической практике.

Нет достоверных данных.

Применение у лиц с нарушением функции печени и почек.

Нет достоверных данных.

Применение во время беременности и в период лактации

Нет достоверных данных. Перед применением лекарственного средства во время беременности и в период лактации необходимо проконсультироваться с врачом.

Перекись водорода

В 1900 г. перекисью водорода в США было обусловлено 8177 отравлений. Чаще всего речь шла о растворе “бытовой” крепости (3 %), и обычно исход был благоприятным. Прием внутрь препаратов крепче 10 % чреват тяжелыми последствиями, однако летальные исходы редки.

Читайте также:
Замена помпы НИВА Шевроле с кондиционером: как поменять своими руками, ремонт + видео

а) Структура и классифкация перекиси водорода. 1 млн -1 = 1,41 мг/м 3 . Молекулярная масса = 34,0

Средневзвешенная по времени ПДК, рекомендованная NIOSH/OSHA, составляет 1 млн -1 для рабочего дня продолжительностью до 10 ч при 40-часовой рабочей неделе. Непосредственно опасной для жизни и здоровья считается концентрация 75 млн -1 . Концентрированная перекись водорода представляет собой едкую жидкость с рН 8,0.

б) Применение перекиси водорода. Перекись водорода — эффективное дезинфицирующее средство, которое применяют также для удаления уплотненного мекония, выявления ректовагинальных свищей и лечения запора или каловых завалов. Рентгенологи используют Н2О2 для удаления газа из кишечника при рентгеноскопии брюшной полости и в смеси с барием для флюороскопической идентификации места желудочно-кишечного кровотечения, поскольку при контакте с перекисью водорода кровь образует пузырьки.

Это средство рекомендуется для дезинфекции тонометрических наконечников, офтальмологических инструментов и пробных контактных линз с целью предупреждения передачи вирусов, особенно ВИЧ.

Растворы низкой концентрации (3—9 %) используются для лечения воспалений наружного слухового прохода, а также для полоскания рта и горла. Перекисью водорода дезинфицируют корневые каналы зубов и другие полости, очищенные от зубной пульпы. Она используется как раствор для орошения влагалища. Более концентрированными препаратами (20—30 %) отбеливают волосы и зубы. Раствор крепостью 90 % применяется для химического синтеза, отбеливания текстиля и бумаги и в составе ракетного топлива.

Управление FDA указывает, что перекись водорода промышленной крепости нелегально распространяется как “35 % пищевая перекись” для разведения и использования в “гипероксигенационной терапии” СПИДа, рака и других болезней. Эту жидкость закупают оптом на химических предприятиях Техаса и Мексики, а затем разливают в мелкие емкости для розничной продажи. В некоторых лавках “здоровой пищи” ее можно встретить под названиями “Biowater” и “Н2О2”. Эта концентрация не утверждена FDA для терапевтического применения в США.

в) Лекарственные формы перекиси водорода. В продаже имеются концентрат для наружного применения 30,5 % по массе, 1,5 % гель (Peroxyl Oral Spot Treatment) и раствор крепостью 1,5 (полоскание для рта Peroxyl mouth rinse с 6 % спирта) и 3 %.

Раствор перекиси водорода для наружного применения — прозрачная бесцветная жидкость без запаха или с запахом озона. Она содержит 2,5—3,5 г этого вещества в 100 мл препарата. Концентрат соответствует 29—32 % перекиси по массе. Н2О2 — очень сильный окислитель. Каждый 1 % этого вещества по массе эквивалентен 3,3 % по объему, 33 % – 100 %, 9 % – 30 % и 3 % – 10 % соответственно. Н2О2 портится при хранении, неоднократном перемешивании и на свету. В Великобритании продаются также растворы концентрацией 3, 6, 27 и 30 %.

г) Токсичная доза. Ингаляция 90 % перекиси водорода вызывает воспаление легких у животных. У людей, случайно вдохнувших пары 90 % Н2О2, отмечаются слюнотечение, першение в глотке и воспаление дыхательных путей. Серьезное поражение легких у человека при экспозиции к белому дыму, выделяемому 90 % Н2О2 при контакте с тяжелым металлом или его солью, маловероятно.

У одного взрослого, хронически вдыхавшего аэрозоль Н2О2 в концентрации 41 мэкв/м3 (средневзвешенная по времени ПДК NIOSH/OSHA равна 1 млн-1, или 1,41 мг/м3), развилась хроническая диффузная интерстициальная болезнь легких.

д) Механизм действия перекиси водорода:

Повреждение клеток. На клеточном уровне индуцированное перекисью водорода повреждение ДНК, по-видимому, обусловлено связанными с ДНК ионами переходных металлов, которые могут взаимодействовать с Н2О2 с образованием высокореактивного радикала, скорее всего ОН. Этот радикал, оказавшись рядом с ДНК, реагирует с ней, что приводит к появлению пуриновых и пиримидиновых продуктов, аналогичных обнаруживаемым в водном растворе ДНК после воздействия на него ионизирующей радиации.

Клинические проявления на макроскопическом уровне. “Белоснежный” вид ободочной слизистой оболочки (побеление и образование пены), наблюдаемый после ее обработки перекисью водорода, объясняется проникновением этого вещества в интерстициальные пространства эпителия и капилляры с образованием микроскопических пузырьков молекулярного кислорода. Кровь выталкивается из интрамуральных сосудов и замещается кислородом в результате реакции с участием тканевой каталазы.

е) Клиника отравления перекисью водорода:

Промывание ран под давлением. Перекись водорода расщепляется на воду и кислород. При использовании в замкнутом пространстве под давлением (как 3 % Н2О2) высвобождающемуся кислороду некуда деваться. Возможны кислородная эмболизация и послеоперационная эмфизема. Cina и соавт. описали факторы, которые надо учитывать при диагностике перорального отравления перекисью водорода.

• Возрастная группа риска: 1—3 года (старше при умственной отсталости).

• Анамнез: пациент обнаружен рядом с открытой емкостью из-под перекиси водорода; белая пена изо рта, носа и/или заднего прохода; промывание раны перекисью или недавно сделанная перекисная клизма.

• Принятое внутрь количество: вероятно, более 2—4 унций (60—120 мл) 3 % раствора.

• “Клинический” диагноз: шок, острая коронарная недостаточность, синдром внезапной детской смерти, остановка дыхания, эпилептический статус, инсульт или сепсис.

Читайте также:
Проверка компрессии в цилиндрах своими руками

• Рентгенологическая картина: газ в системах брыжеечных, желудочных, селезеночной или воротной вен с расширением желудка и двенадцатиперстной кишки или без него, с газом в нижней полой вене (НПВ) и правом желудочке или без него.

• Макроскопические данные: расширение желудка; “иней” на желудочно-кишечной слизистой оболочке; гастрит, дуоденит и/или колит; пенистая кровь в воротной вене, НПВ, правом желудочке и/или шейных венах; крепитация печени; внутренностная гиперемия; петехии тимуса, эпикарда и, возможно, других внутренних органов или отек мозга.

• Микроскопические данные: гастрит, дуоденит и/или колит, острая внутренностная гиперемия; прозрачные вакуоли в подслизистой основе желудочно-кишечного тракта; прозрачные вакуоли в желудочно-кишечных венах, лимфатических сосудах, брыжеечных лимфатических узлах или связанной со слизистой оболочкой лимфоидной ткани либо вакуолизация других органов (газовые эмболы).

• Токсикологический анализ: в крови, желудочном содержимом и найденной при пострадавшем емкости токсичных веществ не обнаружено.

• Микробиологические данные: патогены не обнаружены. Описан пневморетроперитонеум.

Промывание ободочной и подвздошной кишок. Кислородная эмболизация вен и лимфатических сосудов тонкой кишки может произойти при промывании подвздошной кишки 1 % перекисью водорода. Пузырьки воздуха появляются при начале ее инстилляции и сохраняются в течение примерно 30 мин. Перекись водорода (1%), использованная для промывания кишечника у одного младенца по поводу закупорки меконием, вызвала газовую эмболизацию брыжеечных и воротной вен с летальным исходом.
Клизмы с перекисью водорода могут привести к язвенному колиту, который иногда имитирует псевдомембранозный колит. Наблюдался также “перекисный” проктит.

Изъязвление полости рта. Избыточное применение 3 % перекиси водорода вместе с бикарбонатом натрия и поваренной солью или без них для полоскания рта чревато эрозией мягких тканей десен.

Поражение роговицы — дезинфекция мягких контактных линз. Применение 3 % перекиси водорода для дезинфекции мягких контактных линз может обусловить жжение, слезотечение, гиперемию, блефароспазм, отек и даже необратимое повреждение роговицы. Этим же чревато прикладывание к глазу наконечника тонометра, смоченного раствором Н2О2.

Перекись водорода в замкнутых полостях тела. Введение через канюлю 20 мл перекиси водорода и одновременное использование пропитанных ею тампонов при полной артропластике тазобедренного сустава привели к тяжелому циркуляторному коллапсу и остановке сердца.

Пероральное отравление перекисью водорода “бытовой” концентрации (3—9 %). Прием внутрь слабого раствора перекиси водорода приводит к умеренному раздражению слизистых оболочек и чреват спонтанной рвотой или небольшим вздутием живота.

Промышленная концентрация (более 10 %). Прием внутрь перекиси водорода промышленной концентрации чреват тяжелыми ожогами ротоглотки и пищеварительного тракта с возможным разрывом полых органов в результате выделения кислорода. Пена может вызвать закупорку дыхательных путей и механическую асфиксию. Предполагается, что именно дыхательная недостаточность была причиной летальных исходов после приема внутрь перекиси водорода концентрацией выше 10 %.

ж) Лечение отравления перекисью водрода:

Стабилизация состояния:
1. Крайне важно как можно быстрее восстановить проходимость дыхательных путей, поскольку ранней причиной смерти, по-видимому, являются нарушение и остановка дыхания.
2. При доставке в отделение неотложной медицинской помощи необходимо немедленно обеспечить доступ в вену, к кислороду и кардиомонитору. Надо определить газовый состав артериальной крови. По показаниям проводят эндотрахеальную интубацию, кислородотерапию, аппаратную вентиляцию и массаж сердца.
3. Надо быть готовым к быстрому развитию припадков.
4. Начинают инфузионную терапию, следя за количеством вводимой и выводимой жидкости и не допуская перегрузки ею организма, иначе пациент может умереть от дыхательной недостаточности и остановки дыхания.

Очистка пищеварительного тракта. Можно сделать промывание желудка ледяным солевым раствором при эндотрахеальном лаваже. При перораль-ном приеме перекиси водорода промышленной крепости польза активированного угля, слабительных средств и других способов очистки кишечника не доказана.

Усиление выведения. Процедуры, усиливающие выведение перекиси водорода из кровотока, за исключением хирургического вмешательства при вызванной ею закупорке сосудов, не известны.

Антидоты перекиси водорода. Антидотов не существует.

Поддерживающая терапия. Отравление перекисью водорода обычно лечат симптоматическими и поддерживающими мерами.

Припадки. При рецидивировании припадков внутривенно вводят диазепам и фенитоин. Проводят компьютерно-томографическое сканирование головного мозга.

Кома. Обычные назначения при коме: налоксон, тиамин, 50 % раствор декстрозы.

Метаболический ацидоз. Вводят бикарбонат натрия внутривенно.

Эзофа гогастродуоденоскопия. Делают вскоре после поступления пациента в стационар и еще раз через 48 ч. В зависимости от мнения гастроэнтеролога при ожогах желудка после эндоскопии можно назначить антациды.

Лапаротомия. Может потребоваться при симптомах скопления воздуха в желудочно-кишечном тракте.

Мониторинг внутричерепного давления. По показаниям назначают гипервентиляцию.

Рентгеноскопия брюшной полости. Выявляют наличие воздуха в области печени.

Редактор: Искандер Милевски. Дата обновления публикации: 18.3.2021

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: